/* solver.c - Alpine Package Keeper (APK) * A backtracking, forward checking dependency graph solver. * * Copyright (C) 2008-2012 Timo Teräs * All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. See http://www.gnu.org/ for details. */ #include "apk_defines.h" #include "apk_database.h" #include "apk_package.h" #include "apk_solver.h" #include "apk_print.h" //#define DEBUG_PRINT #define DEBUG_CHECKS #ifdef DEBUG_PRINT #include #define dbg_printf(args...) fprintf(stderr, args) #else #define dbg_printf(args...) #endif #if defined(DEBUG_PRINT) || defined(DEBUG_CHECKS) #define ASSERT(cond, fmt...) \ if (!(cond)) { fprintf(stderr, fmt); *(char*)NULL = 0; } #else #define ASSERT(cond, fmt...) #endif struct apk_score { unsigned short conflicts; unsigned short non_preferred_actions; unsigned short preference; }; #define SCORE_FMT "{%d/%d/%d}" #define SCORE_PRINTF(s) (s)->conflicts, (s)->non_preferred_actions, (s)->preference enum { DECISION_ASSIGN = 0, DECISION_EXCLUDE }; enum { BRANCH_NO, BRANCH_YES, }; struct apk_decision { union { struct apk_name *name; struct apk_package *pkg; }; #ifdef DEBUG_CHECKS struct apk_score saved_score; #endif unsigned no_package : 1; unsigned type : 1; unsigned branching_point : 1; unsigned topology_position : 1; }; struct apk_package_state { unsigned int topology_soft; unsigned short conflicts; unsigned char preference; unsigned availability_checked : 1; unsigned unavailable : 1; unsigned install_applied : 1; unsigned handle_install_if : 1; unsigned locked : 1; }; struct apk_name_state { struct list_head unsolved_list; struct apk_name *name; struct apk_package *chosen; struct apk_score minimum_penalty; unsigned short merge_index; unsigned short prerequires; unsigned short requirers; unsigned short install_ifs; unsigned short preferred_pinning; unsigned short allowed_pinning; unsigned solver_flags_local : 4; unsigned solver_flags_local_mask : 4; unsigned solver_flags_inherited : 4; /* one time prepare/finish flags */ unsigned decision_counted : 1; unsigned originally_installed : 1; unsigned prepared : 1; unsigned in_changeset : 1; /* dynamic state flags */ unsigned none_excluded : 1; unsigned locked : 1; }; struct apk_solver_state { struct apk_database *db; struct apk_decision *decisions; struct list_head unsolved_list_head; unsigned int num_topology_positions; unsigned int num_decisions, max_decisions; unsigned int topology_position; unsigned int assigned_names; struct apk_solution_array *best_solution; struct apk_score score; struct apk_score minimum_penalty; struct apk_score best_score; unsigned solver_flags : 4; unsigned impossible_constraints : 1; }; typedef enum { SOLVERR_SOLUTION = 0, SOLVERR_PRUNED, SOLVERR_EXPAND, SOLVERR_STOP, } solver_result_t; static void apply_constraint(struct apk_solver_state *ss, struct apk_dependency *dep); static void undo_constraint(struct apk_solver_state *ss, struct apk_dependency *dep); static solver_result_t push_decision(struct apk_solver_state *ss, struct apk_name *name, struct apk_package *pkg, int primary_decision, int branching_point, int topology_position); static void addscore(struct apk_score *a, struct apk_score *b) { a->conflicts += b->conflicts; a->non_preferred_actions += b->non_preferred_actions; a->preference += b->preference; } static void subscore(struct apk_score *a, struct apk_score *b) { a->conflicts -= b->conflicts; a->non_preferred_actions -= b->non_preferred_actions; a->preference -= b->preference; } static int cmpscore(struct apk_score *a, struct apk_score *b) { if (a->conflicts < b->conflicts) return -1; if (a->conflicts > b->conflicts) return 1; if (a->non_preferred_actions < b->non_preferred_actions) return -1; if (a->non_preferred_actions > b->non_preferred_actions) return 1; if (a->preference < b->preference) return -1; if (a->preference > b->preference) return 1; return 0; } static int cmpscore2(struct apk_score *a1, struct apk_score *a2, struct apk_score *b) { struct apk_score tmp = *a1; addscore(&tmp, a2); return cmpscore(&tmp, b); } static struct apk_name *decision_to_name(struct apk_decision *d) { if (d->no_package) return d->name; return d->pkg->name; } static struct apk_package *decision_to_pkg(struct apk_decision *d) { if (d->no_package) return NULL; return d->pkg; } static struct apk_package_state *pkg_to_ps(struct apk_package *pkg) { return (struct apk_package_state*) pkg->state_ptr; } static struct apk_name_state *name_to_ns(struct apk_name *name) { struct apk_name_state *ns; if (name->state_ptr == NULL) { ns = calloc(1, sizeof(struct apk_name_state)); ns->name = name; name->state_ptr = ns; } else { ns = (struct apk_name_state*) name->state_ptr; } return ns; } static inline int pkg_available(struct apk_database *db, struct apk_package *pkg) { if (pkg->installed_size == 0) return TRUE; if (pkg->filename != NULL) return TRUE; if (apk_db_select_repo(db, pkg) != NULL) return TRUE; return FALSE; } static void foreach_dependency_pkg( struct apk_solver_state *ss, struct apk_dependency_array *depends, void (*cb)(struct apk_solver_state *ss, struct apk_package *dependency)) { int i, j; /* And sort the main dependencies */ for (i = 0; i < depends->num; i++) { struct apk_dependency *dep = &depends->item[i]; struct apk_name *name0 = dep->name; for (j = 0; j < name0->pkgs->num; j++) { struct apk_package *pkg0 = name0->pkgs->item[j]; /* conflict depends on all to be not installed */ if (!apk_dep_is_satisfied(dep, pkg0)) continue; cb(ss, pkg0); } } } static void foreach_rinstall_if_pkg( struct apk_solver_state *ss, struct apk_package *pkg, void (*cb)(struct apk_solver_state *ss, struct apk_package *rinstall_if)) { struct apk_name *name = pkg->name; int i, j, k; for (i = 0; i < pkg->name->rinstall_if->num; i++) { struct apk_name *name0 = pkg->name->rinstall_if->item[i]; dbg_printf(PKG_VER_FMT ": rinstall_if %s\n", PKG_VER_PRINTF(pkg), name0->name); for (j = 0; j < name0->pkgs->num; j++) { struct apk_package *pkg0 = name0->pkgs->item[j]; for (k = 0; k < pkg0->install_if->num; k++) { struct apk_dependency *dep = &pkg0->install_if->item[k]; if (dep->name == name && apk_dep_is_satisfied(dep, pkg)) break; } if (k >= pkg0->install_if->num) continue; /* pkg depends (via install_if) on pkg0 */ cb(ss, pkg0); } } } static unsigned int get_pinning_mask_repos(struct apk_database *db, unsigned short pinning_mask) { unsigned int repository_mask = 0; int i; for (i = 0; i < db->num_repo_tags && pinning_mask; i++) { if (!(BIT(i) & pinning_mask)) continue; pinning_mask &= ~BIT(i); repository_mask |= db->repo_tags[i].allowed_repos; } return repository_mask; } static void get_topology_score( struct apk_solver_state *ss, struct apk_name_state *ns, struct apk_package *pkg, int lock_score, struct apk_score *_score) { struct apk_name *name = pkg->name; struct apk_package_state *ps = pkg_to_ps(pkg); struct apk_score score; unsigned short name_flags; unsigned int repos; unsigned short preferred_pinning, allowed_pinning; unsigned int preferred_repos, allowed_repos; /* effective dynamic flags */ name_flags = ns->solver_flags_local | ns->solver_flags_inherited | ss->solver_flags; score = (struct apk_score) { .conflicts = ps->conflicts, .preference = ps->preference, }; if ((name_flags & APK_SOLVERF_AVAILABLE) && (pkg->repos == 0)) { score.non_preferred_actions ++; score.preference += name->pkgs->num; } else if (lock_score && !(name_flags & APK_SOLVERF_UPGRADE)) { /* not upgrading: it is not preferred to change package */ struct apk_name_state *ns = name_to_ns(name); if (pkg->ipkg == NULL && ns->originally_installed) score.non_preferred_actions++; } repos = pkg->repos | (pkg->ipkg ? ss->db->repo_tags[pkg->ipkg->repository_tag].allowed_repos : 0); preferred_pinning = ns->preferred_pinning ?: APK_DEFAULT_PINNING_MASK; preferred_repos = get_pinning_mask_repos(ss->db, preferred_pinning); if (!(repos & preferred_repos)) score.non_preferred_actions++; if (lock_score) { allowed_pinning = ns->allowed_pinning | preferred_pinning; allowed_repos = get_pinning_mask_repos(ss->db, allowed_pinning); if (!(repos & allowed_repos)) score.non_preferred_actions += 2; } *_score = score; } static int is_topology_optimum(struct apk_solver_state *ss, struct apk_package *pkg) { struct apk_name *name = pkg->name; struct apk_name_state *ns = name_to_ns(name); struct apk_score score; int i; /* FIXME: should not use absolute topology score */ get_topology_score(ss, ns, pkg, 1, &score); for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg0 = name->pkgs->item[i]; struct apk_package_state *ps0 = pkg_to_ps(pkg0); struct apk_score score0; if (pkg0 == pkg) continue; if (ps0 == NULL || ps0->locked || ss->topology_position < pkg->topology_hard) continue; get_topology_score(ss, ns, pkg0, 1, &score0); if (cmpscore(&score0, &score) < 0) return 0; } return 1; } static int compare_absolute_package_preference( struct apk_package *pkgA, struct apk_package *pkgB) { /* specified on command line directly */ if (pkgA->filename && !pkgB->filename) return 1; if (pkgB->filename && !pkgA->filename) return -1; /* upgrading, or neither of the package is installed, so * we just fall back comparing to versions */ switch (apk_pkg_version_compare(pkgA, pkgB)) { case APK_VERSION_GREATER: return 1; case APK_VERSION_LESS: return -1; } /* prefer the installed package */ if (pkgA->ipkg != NULL && pkgB->ipkg == NULL) return 1; if (pkgB->ipkg != NULL && pkgA->ipkg == NULL) return -1; /* prefer the one with lowest available repository */ return ffsl(pkgB->repos) - ffsl(pkgA->repos); } static void calculate_pkg_preference(struct apk_package *pkg) { struct apk_name *name = pkg->name; struct apk_package_state *ps = pkg_to_ps(pkg); int i; for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg0 = name->pkgs->item[i]; if (pkg == pkg0) continue; if (compare_absolute_package_preference(pkg, pkg0) < 0) ps->preference++; } } static void sort_hard_dependencies(struct apk_solver_state *ss, struct apk_package *pkg) { struct apk_package_state *ps; struct apk_name_state *ns; if (pkg->state_ptr == NULL) pkg->state_ptr = calloc(1, sizeof(struct apk_package_state)); ps = pkg_to_ps(pkg); if (ps->topology_soft) return; pkg->topology_hard = -1; ps->topology_soft = -1; calculate_pkg_preference(pkg); /* Consider hard dependencies only */ foreach_dependency_pkg(ss, pkg->depends, sort_hard_dependencies); foreach_dependency_pkg(ss, pkg->install_if, sort_hard_dependencies); ss->max_decisions++; ns = name_to_ns(pkg->name); if (!ns->decision_counted) { ss->max_decisions++; ns->decision_counted = 1; } ps->topology_soft = pkg->topology_hard = ++ss->num_topology_positions; dbg_printf(PKG_VER_FMT ": topology_hard=%d\n", PKG_VER_PRINTF(pkg), pkg->topology_hard); } static void sort_soft_dependencies(struct apk_solver_state *ss, struct apk_package *pkg) { struct apk_package_state *ps; sort_hard_dependencies(ss, pkg); ps = pkg_to_ps(pkg); if (ps->topology_soft != pkg->topology_hard) return; ps->topology_soft = -1; /* Soft reverse dependencies aka. install_if */ foreach_rinstall_if_pkg(ss, pkg, sort_hard_dependencies); foreach_dependency_pkg(ss, pkg->depends, sort_soft_dependencies); /* Assign a topology sorting order */ ps->topology_soft = ++ss->num_topology_positions; dbg_printf(PKG_VER_FMT ": topology_soft=%d\n", PKG_VER_PRINTF(pkg), ps->topology_soft); } static void sort_name(struct apk_solver_state *ss, struct apk_name *name) { int i; for (i = 0; i < name->pkgs->num; i++) sort_soft_dependencies(ss, name->pkgs->item[i]); } static void foreach_locked_reverse_dependency( struct apk_name *name, void (*cb)(struct apk_package *rdepend, void *ctx), void *ctx) { int i, j; if (name == NULL) return; for (i = 0; i < name->rdepends->num; i++) { struct apk_name *name0 = name->rdepends->item[i]; struct apk_name_state *ns0 = name_to_ns(name0); struct apk_package *pkg0 = ns0->chosen; if (!ns0->locked || ns0->chosen == NULL) continue; for (j = 0; j < pkg0->depends->num; j++) { struct apk_dependency *dep = &pkg0->depends->item[j]; if (dep->name == name) break; } if (j >= pkg0->depends->num) continue; cb(pkg0, ctx); } } static void foreach_dependency(struct apk_solver_state *ss, struct apk_dependency_array *deps, void (*func)(struct apk_solver_state *ss, struct apk_dependency *dep)) { int i; for (i = 0; i < deps->num; i++) func(ss, &deps->item[i]); } static int install_if_missing(struct apk_solver_state *ss, struct apk_package *pkg) { struct apk_name_state *ns; int i, missing = 0; for (i = 0; i < pkg->install_if->num; i++) { struct apk_dependency *dep = &pkg->install_if->item[i]; ns = name_to_ns(dep->name); if (!ns->locked || !apk_dep_is_satisfied(dep, ns->chosen)) missing++; } return missing; } static int check_if_package_unavailable(struct apk_solver_state *ss, struct apk_package *pkg, int do_check) { struct apk_name *name = pkg->name; struct apk_package_state *ps = pkg_to_ps(pkg); struct apk_name_state *ns = name_to_ns(name); /* installed and no-reinstall required? no check needed. */ if ((pkg->ipkg != NULL) && ((ns->solver_flags_local | ns->solver_flags_inherited | ss->solver_flags) & APK_SOLVERF_REINSTALL) == 0) return 0; /* done already? */ if (ps->availability_checked && !do_check) return ps->unavailable; /* and it's not available, we can't use it */ if (!pkg_available(ss->db, pkg)) ps->unavailable = 1; ps->availability_checked = 1; return ps->unavailable; } static void foreach_common_dependency( struct apk_solver_state *ss, struct apk_name *name, void (*cb)(struct apk_solver_state *ss, struct apk_name *common_dependency)) { struct apk_name *name0; struct apk_name_state *ns0; struct apk_package *pkg; struct apk_package_state *ps; struct apk_dependency *dep; int i, j, first_found = -1, last_found = 0; for (i = 0; i < name->pkgs->num; i++) { pkg = name->pkgs->item[i]; ps = pkg_to_ps(pkg); if (ps == NULL || ps->locked) continue; if (first_found == -1) first_found = i; for (j = 0; j < pkg->depends->num; j++) { dep = &pkg->depends->item[j]; if (dep->optional) continue; name0 = dep->name; ns0 = name_to_ns(name0); if (ns0->merge_index == last_found) ns0->merge_index = i + 1; } last_found = i + 1; } if (first_found == -1) return; pkg = name->pkgs->item[first_found]; for (j = 0; j < pkg->depends->num; j++) { dep = &pkg->depends->item[j]; if (dep->optional) continue; name0 = dep->name; ns0 = name_to_ns(name0); if (ns0->merge_index == last_found) cb(ss, name0); ns0->merge_index = 0; } } #if 0 static void prepare_name(struct apk_solver_state *ss, struct apk_name *name) { struct apk_name_state *ns = name_to_ns(name); int i, j; if (ns->prepared) return; ns->prepared = 1; for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg = name->pkgs->item[i]; if (pkg_to_ps(pkg) == NULL) continue; for (j = 0; j < pkg->depends->num; j++) { struct apk_dependency *dep = &pkg->depends->item[j]; prepare_name(ss, dep->name); } } } #endif static void get_unassigned_score(struct apk_name *name, struct apk_score *score) { struct apk_name_state *ns = name_to_ns(name); *score = (struct apk_score){ .conflicts = ns->requirers + ns->prerequires, .preference = name->pkgs->num, }; } static int update_name_state(struct apk_solver_state *ss, struct apk_name *name) { struct apk_name_state *ns = name_to_ns(name); struct apk_package *best_pkg = NULL, *preferred_pkg = NULL; struct apk_score preferred_score; unsigned int best_topology = 0; int i, options = 0; if (ns->locked) return ns->chosen != NULL; subscore(&ss->minimum_penalty, &ns->minimum_penalty); ns->minimum_penalty = (struct apk_score) { 0, 0 }; get_unassigned_score(name, &preferred_score); for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg0 = name->pkgs->item[i]; struct apk_package_state *ps0 = pkg_to_ps(pkg0); struct apk_score pkg0_score; if (ps0 == NULL || ps0->locked || ss->topology_position < pkg0->topology_hard || check_if_package_unavailable(ss, pkg0, 0)) continue; /* preferred - currently most optimal for end solution */ /* FIXME: should not use absolute topology score */ get_topology_score(ss, ns, pkg0, 1, &pkg0_score); if (preferred_pkg == NULL || cmpscore(&pkg0_score, &preferred_score) < 0) { preferred_pkg = pkg0; preferred_score = pkg0_score; } /* next in topology order - next to get locked in */ if (ps0->topology_soft < ss->topology_position && ps0->topology_soft > best_topology) best_pkg = pkg0, best_topology = ps0->topology_soft; else if (pkg0->topology_hard > best_topology) best_pkg = pkg0, best_topology = pkg0->topology_hard; options++; } if (ns->prerequires == 0 && ns->requirers == 0 && ns->install_ifs == 0) { /* No one really needs this name (anymore). */ if (list_hashed(&ns->unsolved_list)) { list_del(&ns->unsolved_list); list_init(&ns->unsolved_list); } ns->chosen = NULL; dbg_printf("%s: not required\n", name->name); return options + 1; } if (!list_hashed(&ns->unsolved_list)) list_add_tail(&ns->unsolved_list, &ss->unsolved_list_head); /* So far decided that something will be installed for this * name. So assign the minimum penalty, and next position. */ ns->chosen = best_pkg; ns->minimum_penalty = preferred_score; addscore(&ss->minimum_penalty, &ns->minimum_penalty); dbg_printf("%s: min.pen. " SCORE_FMT ", %d prerequirers, %d requirers, %d install_ifs, %d options (next topology %d)\n", name->name, SCORE_PRINTF(&ns->minimum_penalty), ns->prerequires, ns->requirers, ns->install_ifs, options, best_topology); if (!ns->none_excluded) { dbg_printf("%s: none not excluded yet\n", name->name); return options + 1; } if (options == 0) { ss->impossible_constraints = 1; dbg_printf("%s: impossible constraints\n", name->name); } return options; } static void trigger_install_if(struct apk_solver_state *ss, struct apk_package *pkg) { if (install_if_missing(ss, pkg) == 0) { struct apk_name_state *ns = ns = name_to_ns(pkg->name); dbg_printf("trigger_install_if: " PKG_VER_FMT " triggered\n", PKG_VER_PRINTF(pkg)); ns->install_ifs++; update_name_state(ss, pkg->name); } } static void untrigger_install_if(struct apk_solver_state *ss, struct apk_package *pkg) { if (install_if_missing(ss, pkg) != 1) { struct apk_name_state *ns = name_to_ns(pkg->name); dbg_printf("untrigger_install_if: " PKG_VER_FMT " no longer triggered\n", PKG_VER_PRINTF(pkg)); ns->install_ifs--; update_name_state(ss, pkg->name); } } static void increment_prerequires(struct apk_solver_state *ss, struct apk_name *name) { struct apk_name_state *ns = name_to_ns(name); ns->prerequires++; update_name_state(ss, name); } static void decrement_prerequires(struct apk_solver_state *ss, struct apk_name *name) { struct apk_name_state *ns = name_to_ns(name); ns->prerequires--; update_name_state(ss, name); } static solver_result_t apply_decision(struct apk_solver_state *ss, struct apk_decision *d) { struct apk_name *name = decision_to_name(d); struct apk_name_state *ns = name_to_ns(name); struct apk_package *pkg = decision_to_pkg(d); struct apk_score score; ss->impossible_constraints = 0; if (pkg != NULL) { struct apk_package_state *ps = pkg_to_ps(pkg); dbg_printf("-->apply_decision: " PKG_VER_FMT " %s\n", PKG_VER_PRINTF(pkg), (d->type == DECISION_ASSIGN) ? "ASSIGN" : "EXCLUDE"); ps->locked = 1; ps->handle_install_if = 0; if (d->topology_position) { if (ps->topology_soft < ss->topology_position) { if (d->type == DECISION_ASSIGN) { ps->handle_install_if = 1; dbg_printf("triggers due to " PKG_VER_FMT "\n", PKG_VER_PRINTF(pkg)); } ss->topology_position = ps->topology_soft; } else { ss->topology_position = pkg->topology_hard; } } if (d->type == DECISION_ASSIGN) { subscore(&ss->minimum_penalty, &ns->minimum_penalty); ns->minimum_penalty = (struct apk_score) { 0 }; get_topology_score(ss, ns, pkg, 1, &score); addscore(&ss->score, &score); if (cmpscore2(&ss->score, &ss->minimum_penalty, &ss->best_score) >= 0 || check_if_package_unavailable(ss, pkg, 1)) { dbg_printf("install causing "SCORE_FMT", penalty too big: "SCORE_FMT"+"SCORE_FMT">="SCORE_FMT"\n", SCORE_PRINTF(&score), SCORE_PRINTF(&ss->score), SCORE_PRINTF(&ss->minimum_penalty), SCORE_PRINTF(&ss->best_score)); subscore(&ss->score, &score); return SOLVERR_PRUNED; } ps->install_applied = 1; ss->assigned_names++; ns->chosen = pkg; ns->locked = 1; list_del(&ns->unsolved_list); list_init(&ns->unsolved_list); foreach_dependency(ss, pkg->depends, apply_constraint); foreach_rinstall_if_pkg(ss, pkg, trigger_install_if); } } else { dbg_printf("-->apply_decision: %s %s NOTHING\n", name->name, (d->type == DECISION_ASSIGN) ? "ASSIGN" : "EXCLUDE"); if (d->type == DECISION_ASSIGN) { subscore(&ss->minimum_penalty, &ns->minimum_penalty); ns->minimum_penalty = (struct apk_score) { 0 }; get_unassigned_score(name, &score); addscore(&ss->score, &score); ns->chosen = NULL; ns->locked = 1; list_del(&ns->unsolved_list); list_init(&ns->unsolved_list); } else { ns->none_excluded = 1; } } if (ss->impossible_constraints) return SOLVERR_PRUNED; if (d->type == DECISION_EXCLUDE) { foreach_common_dependency(ss, name, increment_prerequires); if (update_name_state(ss, name) == 0) { dbg_printf("%s: %s would prune name to empty\n", name->name, (d->type == DECISION_ASSIGN) ? "ASSIGN" : "EXCLUDE"); return SOLVERR_PRUNED; } } if (cmpscore2(&ss->score, &ss->minimum_penalty, &ss->best_score) >= 0) { dbg_printf("%s: %s penalty too big: "SCORE_FMT"+"SCORE_FMT">="SCORE_FMT"\n", name->name, (d->type == DECISION_ASSIGN) ? "ASSIGN" : "EXCLUDE", SCORE_PRINTF(&ss->score), SCORE_PRINTF(&ss->minimum_penalty), SCORE_PRINTF(&ss->best_score)); return SOLVERR_PRUNED; } return SOLVERR_EXPAND; } static void undo_decision(struct apk_solver_state *ss, struct apk_decision *d) { struct apk_name *name = decision_to_name(d); struct apk_name_state *ns = name_to_ns(name); struct apk_package *pkg = decision_to_pkg(d); struct apk_score score; if (d->type == DECISION_EXCLUDE) { foreach_common_dependency(ss, name, decrement_prerequires); } if (pkg != NULL) { struct apk_package_state *ps = pkg_to_ps(pkg); dbg_printf("-->undo_decision: " PKG_VER_FMT " %s\n", PKG_VER_PRINTF(pkg), (d->type == DECISION_ASSIGN) ? "ASSIGN" : "EXCLUDE"); if (d->topology_position) { if (ps->handle_install_if) ss->topology_position = ps->topology_soft; else ss->topology_position = pkg->topology_hard; } if (ps->install_applied) { ps->install_applied = 0; ss->assigned_names--; foreach_rinstall_if_pkg(ss, pkg, untrigger_install_if); foreach_dependency(ss, pkg->depends, undo_constraint); get_topology_score(ss, ns, pkg, 1, &score); subscore(&ss->score, &score); } ps->locked = 0; } else { dbg_printf("-->undo_decision: %s %s NOTHING\n", name->name, (d->type == DECISION_ASSIGN) ? "ASSIGN" : "EXCLUDE"); if (d->type == DECISION_ASSIGN) { get_unassigned_score(name, &score); subscore(&ss->score, &score); } else { ns->none_excluded = 0; } } ns->locked = 0; ns->chosen = NULL; update_name_state(ss, name); } static solver_result_t push_decision(struct apk_solver_state *ss, struct apk_name *name, struct apk_package *pkg, int primary_decision, int branching_point, int topology_position) { struct apk_decision *d; ASSERT(ss->num_decisions <= ss->max_decisions, "Decision tree overflow.\n"); ss->num_decisions++; d = &ss->decisions[ss->num_decisions]; #ifdef DEBUG_CHECKS d->saved_score = ss->score; #endif d->type = primary_decision; d->branching_point = branching_point; d->topology_position = topology_position; if (pkg == NULL) { d->name = name; d->no_package = 1; } else { d->pkg = pkg; d->no_package = 0; } return apply_decision(ss, d); } static int next_branch(struct apk_solver_state *ss) { while (ss->num_decisions > 0) { struct apk_decision *d = &ss->decisions[ss->num_decisions]; undo_decision(ss, d); #ifdef DEBUG_CHECKS ASSERT(cmpscore(&d->saved_score, &ss->score) == 0, "ERROR! saved_score "SCORE_FMT" != score "SCORE_FMT"\n", SCORE_PRINTF(&d->saved_score), SCORE_PRINTF(&ss->score)); #endif if (d->branching_point == BRANCH_YES) { d->branching_point = BRANCH_NO; d->type = (d->type == DECISION_ASSIGN) ? DECISION_EXCLUDE : DECISION_ASSIGN; return apply_decision(ss, d); } ss->num_decisions--; } dbg_printf("-->next_branch: no more branches\n"); return SOLVERR_STOP; } static void inherit_name_state(struct apk_name *to, struct apk_name *from) { struct apk_name_state *tns = name_to_ns(to); struct apk_name_state *fns = name_to_ns(from); tns->solver_flags_inherited |= fns->solver_flags_inherited | (fns->solver_flags_local & fns->solver_flags_local_mask); tns->allowed_pinning |= fns->allowed_pinning | fns->preferred_pinning; } static void inherit_name_state_wrapper(struct apk_package *rdepend, void *ctx) { struct apk_name *name = (struct apk_name *) ctx; inherit_name_state(name, rdepend->name); } static int has_inherited_state(struct apk_name *name) { struct apk_name_state *ns = name_to_ns(name); if (name == NULL) return 0; if (ns->solver_flags_inherited || (ns->solver_flags_local & ns->solver_flags_local_mask)) return 1; if (ns->allowed_pinning) return 1; return 0; } static void recalculate_inherted_name_state(struct apk_name *name) { struct apk_name_state *ns = name_to_ns(name); ns->solver_flags_inherited = 0; ns->allowed_pinning = 0; foreach_locked_reverse_dependency(name, inherit_name_state_wrapper, name); } static void apply_constraint(struct apk_solver_state *ss, struct apk_dependency *dep) { struct apk_name *name = dep->name; struct apk_name_state *ns = name_to_ns(name); int i; if (ns->locked) { if (ns->chosen) dbg_printf("%s: locked to " PKG_VER_FMT " already\n", name->name, PKG_VER_PRINTF(ns->chosen)); else dbg_printf("%s: locked to empty\n", name->name); if (!apk_dep_is_satisfied(dep, ns->chosen)) ss->score.conflicts++; return; } if (name->pkgs->num == 0) { if (!dep->optional) ss->score.conflicts++; return; } if (dep->repository_tag) { dbg_printf("%s: adding pinnings %d\n", dep->name->name, dep->repository_tag); ns->preferred_pinning = BIT(dep->repository_tag); ns->allowed_pinning |= BIT(dep->repository_tag); } if (ss->num_decisions > 0) { struct apk_name *name0 = decision_to_name(&ss->decisions[ss->num_decisions]); dbg_printf("%s: inheriting flags and pinning from %s\n", name->name, name0->name); inherit_name_state(name, name0); } for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg0 = name->pkgs->item[i]; struct apk_package_state *ps0 = pkg_to_ps(pkg0); if (ps0 == NULL || ps0->locked || ss->topology_position < pkg0->topology_hard) continue; if (!apk_dep_is_satisfied(dep, pkg0)) { ps0->conflicts++; dbg_printf(PKG_VER_FMT ": conflicts++ -> %d\n", PKG_VER_PRINTF(pkg0), ps0->conflicts); } } if (!dep->optional) ns->requirers++; update_name_state(ss, name); } static void undo_constraint(struct apk_solver_state *ss, struct apk_dependency *dep) { struct apk_name *name = dep->name; struct apk_name_state *ns = name_to_ns(name); int i; if (ns->locked) { if (ns->chosen != NULL) { dbg_printf(PKG_VER_FMT " selected already for %s\n", PKG_VER_PRINTF(ns->chosen), name->name); } else { dbg_printf("%s selected to not be satisfied\n", name->name); } if (!apk_dep_is_satisfied(dep, ns->chosen)) ss->score.conflicts--; return; } if (name->pkgs->num == 0) { if (!dep->optional) ss->score.conflicts--; return; } for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg0 = name->pkgs->item[i]; struct apk_package_state *ps0 = pkg_to_ps(pkg0); if (ps0 == NULL || ps0->locked || ss->topology_position < pkg0->topology_hard) continue; if (!apk_dep_is_satisfied(dep, pkg0)) { ps0->conflicts--; dbg_printf(PKG_VER_FMT ": conflicts-- -> %d\n", PKG_VER_PRINTF(pkg0), ps0->conflicts); } } if (ss->num_decisions > 0 && has_inherited_state(decision_to_name(&ss->decisions[ss->num_decisions]))) recalculate_inherted_name_state(name); if (!dep->optional) ns->requirers--; update_name_state(ss, name); } static int expand_branch(struct apk_solver_state *ss) { struct apk_name *name; struct apk_name_state *ns; struct apk_package *pkg0 = NULL; unsigned int i, topology0 = 0; unsigned short allowed_pinning, preferred_pinning; unsigned int allowed_repos; int primary_decision, branching_point; /* FIXME: change unsolved_list to a priority queue */ list_for_each_entry(ns, &ss->unsolved_list_head, unsolved_list) { struct apk_score score; struct apk_score pkgscore; name = ns->name; /* no options left */ if (ns->chosen == NULL) { if (ns->none_excluded) return SOLVERR_PRUNED; return push_decision(ss, name, NULL, DECISION_ASSIGN, BRANCH_NO, FALSE); } if (pkg_to_ps(ns->chosen)->topology_soft < ss->topology_position && pkg_to_ps(ns->chosen)->topology_soft > topology0) pkg0 = ns->chosen, topology0 = pkg_to_ps(pkg0)->topology_soft; else if (ns->chosen->topology_hard > topology0) pkg0 = ns->chosen, topology0 = pkg0->topology_hard; score = ss->score; subscore(&score, &ns->minimum_penalty); if (!ns->none_excluded) { get_unassigned_score(name, &pkgscore); if (cmpscore2(&score, &pkgscore, &ss->best_score) >= 0) return push_decision(ss, name, NULL, DECISION_EXCLUDE, BRANCH_NO, FALSE); } for (i = 0; i < name->pkgs->num; i++) { struct apk_package *pkg0 = name->pkgs->item[i]; struct apk_package_state *ps0 = pkg_to_ps(pkg0); if (ps0 == NULL || ps0->locked || ss->topology_position < pkg0->topology_hard) continue; get_topology_score(ss, ns, pkg0, 0, &pkgscore); if (cmpscore2(&score, &pkgscore, &ss->best_score) >= 0) return push_decision(ss, name, pkg0, DECISION_EXCLUDE, BRANCH_NO, FALSE); } } if (pkg0 == NULL) { dbg_printf("expand_branch: solution with score "SCORE_FMT"\n", SCORE_PRINTF(&ss->score)); return SOLVERR_SOLUTION; } /* someone needs to provide this name -- find next eligible * provider candidate */ name = pkg0->name; ns = name_to_ns(name); dbg_printf("expand_branch: %-30s score: "SCORE_FMT"\tminpenalty: "SCORE_FMT"\tbest: "SCORE_FMT"\n", pkg0->name->name, SCORE_PRINTF(&ss->score), SCORE_PRINTF(&ss->minimum_penalty), SCORE_PRINTF(&ss->best_score)); if (!ns->none_excluded) { struct apk_package_state *ps0 = pkg_to_ps(pkg0); if (ps0->conflicts > ns->requirers) primary_decision = DECISION_ASSIGN; else primary_decision = DECISION_EXCLUDE; return push_decision(ss, name, NULL, primary_decision, BRANCH_YES, FALSE); } preferred_pinning = ns->preferred_pinning ?: APK_DEFAULT_PINNING_MASK; allowed_pinning = ns->allowed_pinning | preferred_pinning; allowed_repos = get_pinning_mask_repos(ss->db, allowed_pinning); if ((pkg0->repos != 0) && !(pkg0->repos & allowed_repos)) { /* pinning has not enabled the package */ primary_decision = DECISION_EXCLUDE; /* but if it is installed, we might consider it */ if ((pkg0->ipkg == NULL) && (pkg0->filename == NULL)) branching_point = BRANCH_NO; else branching_point = BRANCH_YES; } else if (ns->requirers == 0 && ns->install_ifs != 0 && install_if_missing(ss, pkg0)) { /* not directly required, and package specific * install_if never triggered */ primary_decision = DECISION_EXCLUDE; branching_point = BRANCH_NO; } else if (is_topology_optimum(ss, pkg0)) { primary_decision = DECISION_ASSIGN; branching_point = BRANCH_YES; } else { primary_decision = DECISION_EXCLUDE; branching_point = BRANCH_YES; } return push_decision(ss, pkg0->name, pkg0, primary_decision, branching_point, TRUE); } static int get_tag(struct apk_database *db, unsigned short pinning_mask, unsigned int repos) { int i; for (i = 0; i < db->num_repo_tags; i++) { if (!(BIT(i) & pinning_mask)) continue; if (db->repo_tags[i].allowed_repos & repos) return i; } return APK_DEFAULT_REPOSITORY_TAG; } static void record_solution(struct apk_solver_state *ss) { struct apk_database *db = ss->db; struct apk_name_state *ns; int i, n; apk_solution_array_resize(&ss->best_solution, ss->assigned_names); n = 0; for (i = ss->num_decisions; i > 0; i--) { struct apk_decision *d = &ss->decisions[i]; struct apk_package *pkg = decision_to_pkg(d); unsigned short pinning; unsigned int repos; if (pkg == NULL) { dbg_printf("record_solution: %s: NOTHING\n", decision_to_name(d)->name); continue; } dbg_printf("record_solution: " PKG_VER_FMT ": %s\n", PKG_VER_PRINTF(pkg), d->type == DECISION_ASSIGN ? "INSTALL" : "no install"); if (d->type != DECISION_ASSIGN) continue; ns = name_to_ns(pkg->name); pinning = ns->allowed_pinning | ns->preferred_pinning | APK_DEFAULT_PINNING_MASK; repos = pkg->repos | (pkg->ipkg ? db->repo_tags[pkg->ipkg->repository_tag].allowed_repos : 0); ASSERT(n < ss->assigned_names, "Name assignment overflow\n"); ss->best_solution->item[n++] = (struct apk_solution_entry){ .pkg = pkg, .reinstall = !!((ns->solver_flags_local | ns->solver_flags_inherited | ss->solver_flags) & APK_SOLVERF_REINSTALL), .repository_tag = get_tag(db, pinning, repos), }; } apk_solution_array_resize(&ss->best_solution, n); } static int compare_solution_entry(const void *p1, const void *p2) { const struct apk_solution_entry *c1 = (const struct apk_solution_entry *) p1; const struct apk_solution_entry *c2 = (const struct apk_solution_entry *) p2; return strcmp(c1->pkg->name->name, c2->pkg->name->name); } static int compare_change(const void *p1, const void *p2) { const struct apk_change *c1 = (const struct apk_change *) p1; const struct apk_change *c2 = (const struct apk_change *) p2; if (c1->newpkg == NULL) { if (c2->newpkg == NULL) { /* both deleted - reverse topology order */ return c2->oldpkg->topology_hard - c1->oldpkg->topology_hard; } /* c1 deleted, c2 installed -> c2 first*/ return 1; } if (c2->newpkg == NULL) /* c1 installed, c2 deleted -> c1 first*/ return -1; return c1->newpkg->topology_hard - c2->newpkg->topology_hard; } static int generate_changeset(struct apk_database *db, struct apk_solution_array *solution, struct apk_changeset *changeset, unsigned short solver_flags) { struct apk_name *name; struct apk_name_state *ns; struct apk_package *pkg, *pkg0; struct apk_installed_package *ipkg; int i, j, num_installs = 0, num_removed = 0, ci = 0; /* calculate change set size */ for (i = 0; i < solution->num; i++) { pkg = solution->item[i].pkg; ns = name_to_ns(pkg->name); ns->chosen = pkg; ns->in_changeset = 1; if ((pkg->ipkg == NULL) || solution->item[i].reinstall || solution->item[i].repository_tag != pkg->ipkg->repository_tag) num_installs++; } list_for_each_entry(ipkg, &db->installed.packages, installed_pkgs_list) { name = ipkg->pkg->name; ns = name_to_ns(name); if ((ns->chosen == NULL) || !ns->in_changeset) num_removed++; } /* construct changeset */ apk_change_array_resize(&changeset->changes, num_installs + num_removed); list_for_each_entry(ipkg, &db->installed.packages, installed_pkgs_list) { name = ipkg->pkg->name; ns = name_to_ns(name); if ((ns->chosen == NULL) || !ns->in_changeset) { changeset->changes->item[ci].oldpkg = ipkg->pkg; ci++; } } for (i = 0; i < solution->num; i++) { pkg = solution->item[i].pkg; name = pkg->name; ns = name_to_ns(name); if ((pkg->ipkg == NULL) || solution->item[i].reinstall || solution->item[i].repository_tag != pkg->ipkg->repository_tag){ for (j = 0; j < name->pkgs->num; j++) { pkg0 = name->pkgs->item[j]; if (pkg0->ipkg == NULL) continue; changeset->changes->item[ci].oldpkg = pkg0; break; } changeset->changes->item[ci].newpkg = pkg; changeset->changes->item[ci].repository_tag = solution->item[i].repository_tag; changeset->changes->item[ci].reinstall = solution->item[i].reinstall; ci++; } } /* sort changeset to topology order */ qsort(changeset->changes->item, changeset->changes->num, sizeof(struct apk_change), compare_change); return 0; } static int free_state(apk_hash_item item, void *ctx) { struct apk_name *name = (struct apk_name *) item; struct apk_name_state *ns = (struct apk_name_state *) name->state_ptr; if (ns != NULL) { free(ns); name->state_ptr = NULL; } return 0; } static int free_package(apk_hash_item item, void *ctx) { struct apk_package *pkg = (struct apk_package *) item; if (pkg->state_ptr != NULL) { free(pkg->state_ptr); pkg->state_ptr = NULL; } return 0; } void apk_solver_set_name_flags(struct apk_name *name, unsigned short solver_flags, unsigned short solver_flags_inheritable) { struct apk_name_state *ns = name_to_ns(name); ns->solver_flags_local = solver_flags; ns->solver_flags_local_mask = solver_flags_inheritable; } static void apk_solver_free(struct apk_database *db) { apk_hash_foreach(&db->available.names, free_state, NULL); apk_hash_foreach(&db->available.packages, free_package, NULL); } int apk_solver_solve(struct apk_database *db, unsigned short solver_flags, struct apk_dependency_array *world, struct apk_solution_array **solution, struct apk_changeset *changeset) { struct apk_solver_state *ss; struct apk_installed_package *ipkg; solver_result_t r = SOLVERR_STOP; int i; ss = calloc(1, sizeof(struct apk_solver_state)); ss->db = db; ss->solver_flags = solver_flags; ss->topology_position = -1; ss->best_score = (struct apk_score){ .conflicts = -1, .non_preferred_actions = -1, .preference = -1, }; list_init(&ss->unsolved_list_head); for (i = 0; i < world->num; i++) sort_name(ss, world->item[i].name); list_for_each_entry(ipkg, &db->installed.packages, installed_pkgs_list) { sort_name(ss, ipkg->pkg->name); name_to_ns(ipkg->pkg->name)->originally_installed = 1; } #if 0 for (i = 0; i < world->num; i++) prepare_name(ss, world->item[i].name); list_for_each_entry(ipkg, &db->installed.packages, installed_pkgs_list) prepare_name(ss, ipkg->pkg->name); #endif ss->max_decisions ++; ss->decisions = calloc(1, sizeof(struct apk_decision[ss->max_decisions])); foreach_dependency(ss, world, apply_constraint); do { /* need EXPAND if here, can return SOLUTION|PRUNED|EXPAND */ r = expand_branch(ss); if (r == SOLVERR_SOLUTION) { struct apk_score score; score = ss->score; addscore(&score, &ss->minimum_penalty); if (cmpscore(&score, &ss->best_score) < 0) { dbg_printf("updating best score "SCORE_FMT" (was: "SCORE_FMT")\n", SCORE_PRINTF(&score), SCORE_PRINTF(&ss->best_score)); record_solution(ss); ss->best_score = score; } r = SOLVERR_PRUNED; } /* next_branch() returns PRUNED, STOP or EXPAND */ while (r == SOLVERR_PRUNED) r = next_branch(ss); /* STOP or EXPAND */ } while (r != SOLVERR_STOP); /* collect packages */ dbg_printf("finished. best score "SCORE_FMT". solution has %d packages.\n", SCORE_PRINTF(&ss->best_score), ss->best_solution->num); if (changeset != NULL) { generate_changeset(db, ss->best_solution, changeset, ss->solver_flags); } if (solution != NULL) { qsort(ss->best_solution->item, ss->best_solution->num, sizeof(struct apk_solution_entry), compare_solution_entry); *solution = ss->best_solution; } else { apk_solution_array_free(&ss->best_solution); } i = ss->best_score.conflicts; apk_solver_free(db); free(ss->decisions); free(ss); return i; } static void print_change(struct apk_database *db, struct apk_change *change, int cur, int total) { struct apk_name *name; struct apk_package *oldpkg = change->oldpkg; struct apk_package *newpkg = change->newpkg; const char *msg = NULL; char status[32], n[512], *nameptr; int r; snprintf(status, sizeof(status), "(%i/%i)", cur+1, total); status[sizeof(status) - 1] = 0; name = newpkg ? newpkg->name : oldpkg->name; if (change->repository_tag > 0) { snprintf(n, sizeof(n), "%s@" BLOB_FMT, name->name, BLOB_PRINTF(*db->repo_tags[change->repository_tag].name)); n[sizeof(n) - 1] = 0; nameptr = n; } else { nameptr = name->name; } if (oldpkg == NULL) { apk_message("%s Installing %s (" BLOB_FMT ")", status, nameptr, BLOB_PRINTF(*newpkg->version)); } else if (newpkg == NULL) { apk_message("%s Purging %s (" BLOB_FMT ")", status, nameptr, BLOB_PRINTF(*oldpkg->version)); } else if (newpkg == oldpkg && !change->reinstall) { apk_message("%s Updating pinning %s (" BLOB_FMT ")", status, nameptr, BLOB_PRINTF(*oldpkg->version)); } else { r = apk_pkg_version_compare(newpkg, oldpkg); switch (r) { case APK_VERSION_LESS: msg = "Downgrading"; break; case APK_VERSION_EQUAL: if (newpkg == oldpkg) msg = "Re-installing"; else msg = "Replacing"; break; case APK_VERSION_GREATER: msg = "Upgrading"; break; } apk_message("%s %s %s (" BLOB_FMT " -> " BLOB_FMT ")", status, msg, nameptr, BLOB_PRINTF(*oldpkg->version), BLOB_PRINTF(*newpkg->version)); } } struct apk_stats { unsigned int bytes; unsigned int packages; }; static void count_change(struct apk_change *change, struct apk_stats *stats) { if (change->newpkg != NULL) { stats->bytes += change->newpkg->installed_size; stats->packages ++; } if (change->oldpkg != NULL) stats->packages ++; } static void draw_progress(int percent) { const int bar_width = apk_get_screen_width() - 7; int i; fprintf(stderr, "\e7%3i%% [", percent); for (i = 0; i < bar_width * percent / 100; i++) fputc('#', stderr); for (; i < bar_width; i++) fputc(' ', stderr); fputc(']', stderr); fflush(stderr); fputs("\e8\e[0K", stderr); } struct progress { struct apk_stats done; struct apk_stats total; struct apk_package *pkg; size_t count; }; static void progress_cb(void *ctx, size_t progress) { struct progress *prog = (struct progress *) ctx; size_t partial = 0, count; if (prog->pkg != NULL) partial = muldiv(progress, prog->pkg->installed_size, APK_PROGRESS_SCALE); count = muldiv(100, prog->done.bytes + prog->done.packages + partial, prog->total.bytes + prog->total.packages); if (prog->count != count) draw_progress(count); prog->count = count; } static int dump_packages(struct apk_changeset *changeset, int (*cmp)(struct apk_change *change), const char *msg) { struct apk_change *change; struct apk_name *name; struct apk_indent indent = { .indent = 2 }; int match = 0, i; for (i = 0; i < changeset->changes->num; i++) { change = &changeset->changes->item[i]; if (!cmp(change)) continue; if (match == 0) printf("%s:\n", msg); if (change->newpkg != NULL) name = change->newpkg->name; else name = change->oldpkg->name; apk_print_indented(&indent, APK_BLOB_STR(name->name)); match++; } if (match) printf("\n"); return match; } static int cmp_remove(struct apk_change *change) { return change->newpkg == NULL; } static int cmp_new(struct apk_change *change) { return change->oldpkg == NULL; } static int cmp_downgrade(struct apk_change *change) { if (change->newpkg == NULL || change->oldpkg == NULL) return 0; if (apk_pkg_version_compare(change->newpkg, change->oldpkg) & APK_VERSION_LESS) return 1; return 0; } static int cmp_upgrade(struct apk_change *change) { if (change->newpkg == NULL || change->oldpkg == NULL) return 0; /* Count swapping package as upgrade too - this can happen if * same package version is used after it was rebuilt against * newer libraries. Basically, different (and probably newer) * package, but equal version number. */ if ((apk_pkg_version_compare(change->newpkg, change->oldpkg) & (APK_VERSION_GREATER | APK_VERSION_EQUAL)) && (change->newpkg != change->oldpkg)) return 1; return 0; } static int compare_package_topology(const void *p1, const void *p2) { struct apk_package *pkg1 = *(struct apk_package **) p1; struct apk_package *pkg2 = *(struct apk_package **) p2; return pkg1->topology_hard - pkg2->topology_hard; } static void run_triggers(struct apk_database *db) { struct apk_package_array *pkgs; int i; pkgs = apk_db_get_pending_triggers(db); if (pkgs == NULL || pkgs->num == 0) return; qsort(pkgs->item, pkgs->num, sizeof(struct apk_package *), compare_package_topology); for (i = 0; i < pkgs->num; i++) { struct apk_package *pkg = pkgs->item[i]; struct apk_installed_package *ipkg = pkg->ipkg; *apk_string_array_add(&ipkg->pending_triggers) = NULL; apk_ipkg_run_script(ipkg, db, APK_SCRIPT_TRIGGER, ipkg->pending_triggers->item); apk_string_array_free(&ipkg->pending_triggers); } apk_package_array_free(&pkgs); } int apk_solver_commit_changeset(struct apk_database *db, struct apk_changeset *changeset, struct apk_dependency_array *world) { struct progress prog; struct apk_change *change; int i, r = 0, size_diff = 0; if (apk_db_check_world(db, world) != 0) { apk_error("Not committing changes due to missing repository tags. Use --force to override."); return -1; } if (changeset->changes == NULL) goto all_done; /* Count what needs to be done */ memset(&prog, 0, sizeof(prog)); for (i = 0; i < changeset->changes->num; i++) { change = &changeset->changes->item[i]; count_change(change, &prog.total); if (change->newpkg) size_diff += change->newpkg->installed_size; if (change->oldpkg) size_diff -= change->oldpkg->installed_size; } size_diff /= 1024; if (apk_verbosity > 1 || (apk_flags & APK_INTERACTIVE)) { r = dump_packages(changeset, cmp_remove, "The following packages will be REMOVED"); r += dump_packages(changeset, cmp_downgrade, "The following packages will be DOWNGRADED"); if (r || (apk_flags & APK_INTERACTIVE) || apk_verbosity > 2) { dump_packages(changeset, cmp_new, "The following NEW packages will be installed"); dump_packages(changeset, cmp_upgrade, "The following packages will be upgraded"); printf("After this operation, %d kB of %s\n", abs(size_diff), (size_diff < 0) ? "disk space will be freed." : "additional disk space will be used."); } if (apk_flags & APK_INTERACTIVE) { printf("Do you want to continue [Y/n]? "); fflush(stdout); r = fgetc(stdin); if (r != 'y' && r != 'Y' && r != '\n') return -1; } } /* Go through changes */ r = 0; for (i = 0; i < changeset->changes->num; i++) { change = &changeset->changes->item[i]; print_change(db, change, i, changeset->changes->num); if (apk_flags & APK_PROGRESS) draw_progress(prog.count); prog.pkg = change->newpkg; if (!(apk_flags & APK_SIMULATE)) { if (change->oldpkg != change->newpkg || change->reinstall) r = apk_db_install_pkg(db, change->oldpkg, change->newpkg, (apk_flags & APK_PROGRESS) ? progress_cb : NULL, &prog); if (r != 0) break; if (change->newpkg) change->newpkg->ipkg->repository_tag = change->repository_tag; } count_change(change, &prog.done); } if (apk_flags & APK_PROGRESS) draw_progress(100); run_triggers(db); all_done: apk_dependency_array_copy(&db->world, world); apk_db_write_config(db); if (r == 0 && !db->performing_self_update) { if (apk_verbosity > 1) { apk_message("OK: %d packages, %d dirs, %d files, %zu MiB", db->installed.stats.packages, db->installed.stats.dirs, db->installed.stats.files, db->installed.stats.bytes / (1024 * 1024)); } else { apk_message("OK: %zu MiB in %d packages", db->installed.stats.bytes / (1024 * 1024), db->installed.stats.packages); } } return r; } static void print_dep_errors(struct apk_database *db, char *label, struct apk_dependency_array *deps) { int i, print_label = 1; char buf[256]; apk_blob_t p; struct apk_indent indent; for (i = 0; i < deps->num; i++) { struct apk_dependency *dep = &deps->item[i]; struct apk_package *pkg = (struct apk_package*) dep->name->state_ptr; if (pkg != NULL && apk_dep_is_satisfied(dep, pkg)) continue; if (print_label) { print_label = 0; indent.x = printf(" %s:", label); indent.indent = indent.x + 1; } p = APK_BLOB_BUF(buf); apk_blob_push_dep(&p, db, dep); p = apk_blob_pushed(APK_BLOB_BUF(buf), p); apk_print_indented(&indent, p); } if (!print_label) printf("\n"); } void apk_solver_print_errors(struct apk_database *db, struct apk_solution_array *solution, struct apk_dependency_array *world, int unsatisfiable) { int i; apk_error("%d unsatisfiable dependencies:", unsatisfiable); for (i = 0; i < solution->num; i++) { struct apk_package *pkg = solution->item[i].pkg; pkg->name->state_ptr = pkg; } print_dep_errors(db, "world", world); for (i = 0; i < solution->num; i++) { struct apk_package *pkg = solution->item[i].pkg; char pkgtext[256]; snprintf(pkgtext, sizeof(pkgtext), PKG_VER_FMT, PKG_VER_PRINTF(pkg)); print_dep_errors(db, pkgtext, pkg->depends); } } int apk_solver_commit(struct apk_database *db, unsigned short solver_flags, struct apk_dependency_array *world) { struct apk_changeset changeset = {}; struct apk_solution_array *solution = NULL; int r; if (apk_db_check_world(db, world) != 0) { apk_error("Not committing changes due to missing repository tags. Use --force to override."); return -1; } r = apk_solver_solve(db, solver_flags, world, &solution, &changeset); if (r < 0) return r; if (r == 0 || (apk_flags & APK_FORCE)) { /* Success -- or forced installation of bad graph */ r = apk_solver_commit_changeset(db, &changeset, world); } else { /* Failure -- print errors */ apk_solver_print_errors(db, solution, world, r); } apk_solution_array_free(&solution); apk_change_array_free(&changeset.changes); return r; }