From 56fbaa3bbe73f12af2bfbbcf2adb196e6f9fe264 Mon Sep 17 00:00:00 2001 From: Rich Felker Date: Tue, 3 Mar 2015 22:50:02 -0500 Subject: make all objects used with atomic operations volatile the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard. --- arch/x32/bits/alltypes.h.in | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'arch/x32') diff --git a/arch/x32/bits/alltypes.h.in b/arch/x32/bits/alltypes.h.in index 74cb212e..38230c42 100644 --- a/arch/x32/bits/alltypes.h.in +++ b/arch/x32/bits/alltypes.h.in @@ -22,10 +22,10 @@ TYPEDEF struct { long long __ll; long double __ld; } max_align_t; TYPEDEF long long time_t; TYPEDEF long long suseconds_t; -TYPEDEF struct { union { int __i[14]; unsigned long __s[7]; } __u; } pthread_attr_t; -TYPEDEF struct { union { int __i[10]; volatile void *volatile __p[5]; } __u; } pthread_mutex_t; -TYPEDEF struct { union { int __i[10]; volatile void *volatile __p[5]; } __u; } mtx_t; -TYPEDEF struct { union { int __i[12]; void *__p[6]; } __u; } pthread_cond_t; -TYPEDEF struct { union { int __i[12]; void *__p[6]; } __u; } cnd_t; -TYPEDEF struct { union { int __i[14]; void *__p[7]; } __u; } pthread_rwlock_t; -TYPEDEF struct { union { int __i[8]; void *__p[4]; } __u; } pthread_barrier_t; +TYPEDEF struct { union { int __i[14]; volatile int __vi[14]; unsigned long __s[7]; } __u; } pthread_attr_t; +TYPEDEF struct { union { int __i[10]; volatile int __vi[10]; volatile void *volatile __p[5]; } __u; } pthread_mutex_t; +TYPEDEF struct { union { int __i[10]; volatile int __vi[10]; volatile void *volatile __p[5]; } __u; } mtx_t; +TYPEDEF struct { union { int __i[12]; volatile int __vi[12]; void *__p[6]; } __u; } pthread_cond_t; +TYPEDEF struct { union { int __i[12]; volatile int __vi[12]; void *__p[6]; } __u; } cnd_t; +TYPEDEF struct { union { int __i[14]; volatile int __vi[14]; void *__p[7]; } __u; } pthread_rwlock_t; +TYPEDEF struct { union { int __i[8]; volatile int __vi[8]; void *__p[4]; } __u; } pthread_barrier_t; -- cgit v1.2.3-70-g09d2