#ifndef _TGMATH_H #define _TGMATH_H /* the return types are only correct with gcc (__GNUC__) otherwise they are long double or long double complex the long double version of a function is never chosen when sizeof(double) == sizeof(long double) (but the return type is set correctly with gcc) */ #include <math.h> #include <complex.h> #define __IS_FP(x) !!((1?1:(x))/2) #define __IS_CX(x) (__IS_FP(x) && sizeof(x) == sizeof((x)+I)) #define __IS_REAL(x) (__IS_FP(x) && 2*sizeof(x) == sizeof((x)+I)) #define __FLT(x) (__IS_REAL(x) && sizeof(x) == sizeof(float)) #define __LDBL(x) (__IS_REAL(x) && sizeof(x) == sizeof(long double) && sizeof(long double) != sizeof(double)) #define __FLTCX(x) (__IS_CX(x) && sizeof(x) == sizeof(float complex)) #define __DBLCX(x) (__IS_CX(x) && sizeof(x) == sizeof(double complex)) #define __LDBLCX(x) (__IS_CX(x) && sizeof(x) == sizeof(long double complex) && sizeof(long double) != sizeof(double)) /* return type */ #ifdef __GNUC__ /* cast to double when x is integral, otherwise use typeof(x) */ #define __RETCAST(x) (__typeof__(*( \ 0 ? (__typeof__(0 ? (double *)0 : (void *)__IS_FP(x)))0 : \ (__typeof__(0 ? (__typeof__(x) *)0 : (void *)!__IS_FP(x)))0 ))) /* 2 args case, consider complex types (for cpow) */ #define __RETCAST_2(x, y) (__typeof__(*( \ 0 ? (__typeof__(0 ? (double *)0 : \ (void *)!((!__IS_FP(x) || !__IS_FP(y)) && __FLT((x)+(y)+1.0f))))0 : \ 0 ? (__typeof__(0 ? (double complex *)0 : \ (void *)!((!__IS_FP(x) || !__IS_FP(y)) && __FLTCX((x)+(y)))))0 : \ (__typeof__(0 ? (__typeof__((x)+(y)) *)0 : \ (void *)((!__IS_FP(x) || !__IS_FP(y)) && (__FLT((x)+(y)+1.0f) || __FLTCX((x)+(y))))))0 ))) /* 3 args case, don't consider complex types (fma only) */ #define __RETCAST_3(x, y, z) (__typeof__(*( \ 0 ? (__typeof__(0 ? (double *)0 : \ (void *)!((!__IS_FP(x) || !__IS_FP(y) || !__IS_FP(z)) && __FLT((x)+(y)+(z)+1.0f))))0 : \ (__typeof__(0 ? (__typeof__((x)+(y)) *)0 : \ (void *)((!__IS_FP(x) || !__IS_FP(y) || !__IS_FP(z)) && __FLT((x)+(y)+(z)+1.0f))))0 ))) /* drop complex from the type of x */ #define __TO_REAL(x) *( \ 0 ? (__typeof__(0 ? (double *)0 : (void *)!__DBLCX(x)))0 : \ 0 ? (__typeof__(0 ? (float *)0 : (void *)!__FLTCX(x)))0 : \ 0 ? (__typeof__(0 ? (long double *)0 : (void *)!__LDBLCX(x)))0 : \ (__typeof__(0 ? (__typeof__(x) *)0 : (void *)__IS_CX(x)))0 ) #else #define __RETCAST(x) #define __RETCAST_2(x, y) #define __RETCAST_3(x, y, z) #endif /* function selection */ #define __tg_real(fun, x) (__RETCAST(x)( \ __FLT(x) ? fun ## f (x) : \ __LDBL(x) ? fun ## l (x) : \ fun(x) )) #define __tg_real_2_1(fun, x, y) (__RETCAST(x)( \ __FLT(x) ? fun ## f (x, y) : \ __LDBL(x) ? fun ## l (x, y) : \ fun(x, y) )) #define __tg_real_2(fun, x, y) (__RETCAST_2(x, y)( \ __FLT(x) && __FLT(y) ? fun ## f (x, y) : \ __LDBL((x)+(y)) ? fun ## l (x, y) : \ fun(x, y) )) #define __tg_complex(fun, x) (__RETCAST((x)+I)( \ __FLTCX((x)+I) && __IS_FP(x) ? fun ## f (x) : \ __LDBLCX((x)+I) ? fun ## l (x) : \ fun(x) )) #define __tg_complex_retreal(fun, x) (__RETCAST(__TO_REAL(x))( \ __FLTCX((x)+I) && __IS_FP(x) ? fun ## f (x) : \ __LDBLCX((x)+I) ? fun ## l (x) : \ fun(x) )) #define __tg_real_complex(fun, x) (__RETCAST(x)( \ __FLTCX(x) ? c ## fun ## f (x) : \ __DBLCX(x) ? c ## fun (x) : \ __LDBLCX(x) ? c ## fun ## l (x) : \ __FLT(x) ? fun ## f (x) : \ __LDBL(x) ? fun ## l (x) : \ fun(x) )) /* special cases */ #define __tg_real_remquo(x, y, z) (__RETCAST_2(x, y)( \ __FLT(x) && __FLT(y) ? remquof(x, y, z) : \ __LDBL((x)+(y)) ? remquol(x, y, z) : \ remquo(x, y, z) )) #define __tg_real_fma(x, y, z) (__RETCAST_3(x, y, z)( \ __FLT(x) && __FLT(y) && __FLT(z) ? fmaf(x, y, z) : \ __LDBL((x)+(y)+(z)) ? fmal(x, y, z) : \ fma(x, y, z) )) #define __tg_real_complex_pow(x, y) (__RETCAST_2(x, y)( \ __FLTCX((x)+(y)) && __IS_FP(x) && __IS_FP(y) ? cpowf(x, y) : \ __FLTCX((x)+(y)) ? cpow(x, y) : \ __DBLCX((x)+(y)) ? cpow(x, y) : \ __LDBLCX((x)+(y)) ? cpowl(x, y) : \ __FLT(x) && __FLT(y) ? powf(x, y) : \ __LDBL((x)+(y)) ? powl(x, y) : \ pow(x, y) )) #define __tg_real_complex_fabs(x) (__RETCAST(__TO_REAL(x))( \ __FLTCX(x) ? cabsf(x) : \ __DBLCX(x) ? cabs(x) : \ __LDBLCX(x) ? cabsl(x) : \ __FLT(x) ? fabsf(x) : \ __LDBL(x) ? fabsl(x) : \ fabs(x) )) /* suppress any macros in math.h or complex.h */ #undef acos #undef acosh #undef asin #undef asinh #undef atan #undef atan2 #undef atanh #undef carg #undef cbrt #undef ceil #undef cimag #undef conj #undef copysign #undef cos #undef cosh #undef cproj #undef creal #undef erf #undef erfc #undef exp #undef exp2 #undef expm1 #undef fabs #undef fdim #undef floor #undef fma #undef fmax #undef fmin #undef fmod #undef frexp #undef hypot #undef ilogb #undef ldexp #undef lgamma #undef llrint #undef llround #undef log #undef log10 #undef log1p #undef log2 #undef logb #undef lrint #undef lround #undef nearbyint #undef nextafter #undef nexttoward #undef pow #undef remainder #undef remquo #undef rint #undef round #undef scalbln #undef scalbn #undef sin #undef sinh #undef sqrt #undef tan #undef tanh #undef tgamma #undef trunc /* tg functions */ #define acos(x) __tg_real_complex(acos, (x)) #define acosh(x) __tg_real_complex(acosh, (x)) #define asin(x) __tg_real_complex(asin, (x)) #define asinh(x) __tg_real_complex(asinh, (x)) #define atan(x) __tg_real_complex(atan, (x)) #define atan2(x,y) __tg_real_2(atan2, (x), (y)) #define atanh(x) __tg_real_complex(atanh, (x)) #define carg(x) __tg_complex_retreal(carg, (x)) #define cbrt(x) __tg_real(cbrt, (x)) #define ceil(x) __tg_real(ceil, (x)) #define cimag(x) __tg_complex_retreal(cimag, (x)) #define conj(x) __tg_complex(conj, (x)) #define copysign(x,y) __tg_real_2(copysign, (x), (y)) #define cos(x) __tg_real_complex(cos, (x)) #define cosh(x) __tg_real_complex(cosh, (x)) #define cproj(x) __tg_complex(cproj, (x)) #define creal(x) __tg_complex_retreal(creal, (x)) #define erf(x) __tg_real(erf, (x)) #define erfc(x) __tg_real(erfc, (x)) #define exp(x) __tg_real_complex(exp, (x)) #define exp2(x) __tg_real(exp2, (x)) #define expm1(x) __tg_real(expm1, (x)) #define fabs(x) __tg_real_complex_fabs(x) #define fdim(x,y) __tg_real_2(fdim, (x), (y)) #define floor(x) __tg_real(floor, (x)) #define fma(x,y,z) __tg_real_fma((x), (y), (z)) #define fmax(x,y) __tg_real_2(fmax, (x), (y)) #define fmin(x,y) __tg_real_2(fmin, (x), (y)) #define fmod(x,y) __tg_real_2(fmod, (x), (y)) #define frexp(x,y) __tg_real_2_1(frexp, (x), (y)) #define hypot(x,y) __tg_real_2(hypot, (x), (y)) #define ilogb(x) __tg_real(ilogb, (x)) #define ldexp(x,y) __tg_real_2_1(ldexp, (x), (y)) #define lgamma(x) __tg_real(lgamma, (x)) #define llrint(x) __tg_real(llrint, (x)) #define llround(x) __tg_real(llround, (x)) #define log(x) __tg_real_complex(log, (x)) #define log10(x) __tg_real(log10, (x)) #define log1p(x) __tg_real(log1p, (x)) #define log2(x) __tg_real(log2, (x)) #define logb(x) __tg_real(logb, (x)) #define lrint(x) __tg_real(lrint, (x)) #define lround(x) __tg_real(lround, (x)) #define nearbyint(x) __tg_real(nearbyint, (x)) #define nextafter(x,y) __tg_real_2(nextafter, (x), (y) #define nexttoward(x,y) __tg_real_2(nexttoward, (x), (y)) #define pow(x,y) __tg_real_complex_pow((x), (y)) #define remainder(x,y) __tg_real_2(remainder, (x), (y)) #define remquo(x,y,z) __tg_real_remquo((x), (y), (z)) #define rint(x) __tg_real(rint, (x)) #define round(x) __tg_real(round, (x)) #define scalbln(x,y) __tg_real_2_1(scalbln, (x), (y)) #define scalbn(x,y) __tg_real_2_1(scalbn, (x), (y)) #define sin(x) __tg_real_complex(sin, (x)) #define sinh(x) __tg_real_complex(sinh, (x)) #define sqrt(x) __tg_real_complex(sqrt, (x)) #define tan(x) __tg_real_complex(tan, (x)) #define tanh(x) __tg_real_complex(tanh, (x)) #define tgamma(x) __tg_real(tgamma, (x)) #define trunc(x) __tg_real(trunc, (x)) #endif