/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */ /* * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Exponential function, long double precision * * * SYNOPSIS: * * long double x, y, expl(); * * y = expl( x ); * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +-10000 50000 1.12e-19 2.81e-20 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a long double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * */ #include "libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double expl(long double x) { return exp(x); } #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 static const long double P[3] = { 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, 9.9999999999999999991025E-1L, }; static const long double Q[4] = { 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L, }; static const long double C1 = 6.9314575195312500000000E-1L, C2 = 1.4286068203094172321215E-6L, MAXLOGL = 1.1356523406294143949492E4L, MINLOGL = -1.13994985314888605586758E4L, LOG2EL = 1.4426950408889634073599E0L; long double expl(long double x) { long double px, xx; int n; if (isnan(x)) return x; if (x > MAXLOGL) return INFINITY; if (x < MINLOGL) return 0.0; /* Express e**x = e**g 2**n * = e**g e**(n loge(2)) * = e**(g + n loge(2)) */ px = floorl(LOG2EL * x + 0.5); /* floor() truncates toward -infinity. */ n = px; x -= px * C1; x -= px * C2; /* rational approximation for exponential * of the fractional part: * e**x = 1 + 2x P(x**2)/(Q(x**2) - P(x**2)) */ xx = x * x; px = x * __polevll(xx, P, 2); x = px/(__polevll(xx, Q, 3) - px); x = 1.0 + 2.0 * x; x = scalbnl(x, n); return x; } #endif