From e132195d6cb8c11ba2fcb5364c24d3a8043664d6 Mon Sep 17 00:00:00 2001
From: Glenn Johnson <glenn-johnson@uiowa.edu>
Date: Mon, 18 Jan 2021 12:54:06 -0600
Subject: add version 3.12.0 to r-mice (#21116)

---
 var/spack/repos/builtin/packages/r-mice/package.py | 39 ++++++++++++----------
 1 file changed, 22 insertions(+), 17 deletions(-)

diff --git a/var/spack/repos/builtin/packages/r-mice/package.py b/var/spack/repos/builtin/packages/r-mice/package.py
index afa9bb119d..b667bdaf12 100644
--- a/var/spack/repos/builtin/packages/r-mice/package.py
+++ b/var/spack/repos/builtin/packages/r-mice/package.py
@@ -7,23 +7,25 @@ from spack import *
 
 
 class RMice(RPackage):
-    """Multiple imputation using Fully Conditional Specification (FCS)
-    implemented by the MICE algorithm as described in Van Buuren and
-    Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>.
+    """Multivariate Imputation by Chained Equations
 
-    Each variable has its own imputation model. Built-in imputation models are
-    provided for continuous data (predictive mean matching, normal), binary
-    data (logistic regression), unordered categorical data (polytomous logistic
-    regression) and ordered categorical data (proportional odds). MICE can
-    also impute continuous two-level data (normal model, pan, second-level
-    variables). Passive imputation can be used to maintain consistency between
-    variables. Various diagnostic plots are available to inspect the quality
-    of the imputations."""
+    Multiple imputation using Fully Conditional Specification (FCS) implemented
+    by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn
+    (2011) <doi:10.18637/jss.v045.i03>.  Each variable has its own imputation
+    model. Built-in imputation models are provided for continuous data
+    (predictive mean matching, normal), binary data (logistic regression),
+    unordered categorical data (polytomous logistic regression) and ordered
+    categorical data (proportional odds). MICE can also impute continuous
+    two-level data (normal model, pan, second-level variables). Passive
+    imputation can be used to maintain consistency between variables. Various
+    diagnostic plots are available to inspect the quality of the
+    imputations."""
 
     homepage = "https://cloud.r-project.org/package=mice"
     url      = "https://cloud.r-project.org/src/contrib/mice_3.0.0.tar.gz"
     list_url = "https://cloud.r-project.org/src/contrib/Archive/mice"
 
+    version('3.12.0', sha256='575d9e650d5fc8cd66c0b5a2f1e659605052b26d61f772fff5eed81b414ef144')
     version('3.6.0', sha256='7bc72bdb631bc9f67d8f76ffb48a7bb275228d861075e20c24c09c736bebec5d')
     version('3.5.0', sha256='4fccecdf9e8d8f9f63558597bfbbf054a873b2d0b0820ceefa7b6911066b9e45')
     version('3.0.0', sha256='98b6bb1c5f8fb099bd0024779da8c865146edb25219cc0c9542a8254152c0add')
@@ -31,11 +33,14 @@ class RMice(RPackage):
     depends_on('r@2.10.0:', type=('build', 'run'))
     depends_on('r-broom', type=('build', 'run'))
     depends_on('r-dplyr', type=('build', 'run'))
-    depends_on('r-mass', type=('build', 'run'))
-    depends_on('r-mitml', type=('build', 'run'))
-    depends_on('r-nnet', type=('build', 'run'))
+    depends_on('r-generics', when='@3.12.0:', type=('build', 'run'))
+    depends_on('r-lattice', type=('build', 'run'))
     depends_on('r-rcpp', type=('build', 'run'))
     depends_on('r-rlang', type=('build', 'run'))
-    depends_on('r-rpart', type=('build', 'run'))
-    depends_on('r-survival', type=('build', 'run'))
-    depends_on('r-lattice', type=('build', 'run'))
+    depends_on('r-tidyr', when='@3.12.0:', type=('build', 'run'))
+    depends_on('r-cpp11', when='@3.12.0:', type=('build', 'run'))
+    depends_on('r-mitml', when='@:3.6.0', type=('build', 'run'))
+    depends_on('r-nnet', when='@:3.6.0', type=('build', 'run'))
+    depends_on('r-rpart', when='@:3.6.0', type=('build', 'run'))
+    depends_on('r-survival', when='@:3.6.0', type=('build', 'run'))
+    depends_on('r-mass', when='@:3.6.0', type=('build', 'run'))
-- 
cgit v1.2.3-70-g09d2