summaryrefslogblamecommitdiff
path: root/libgcompat/math.c
blob: 793ff1ac3d65bc8af9398015661ddb7d2ea91a1b (plain) (tree)
1
2
3
4
5
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

                                               
 

                                                       










                                                                               
                                         
























































                                                                              
 



                         
 
                             
 


















                               
 





                                                 
 
                          
 
                           
 





                                                  
 
                          
 
                             
 





                                                  
 











                                                 
 
                           





















                                                  



























































































































                                                                                 







































































                                                                               

















































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                 
#define _GNU_SOURCE /* Extra maths functions */
#include <math.h>   /* Literally everything */

#include "alias.h"    /* weak_alias */
#include "internal.h" /* GCOMPAT__assert_with_reason */

/**
 * Multiplies the first argument x by FLT_RADIX (probably 2) to the power of y.
 */
long double scalbl(long double x, long double y)
{
	/*
	 * XXX strictly not correct but:
	 * 1) Good Enough(TM)
	 * 2) scalbl is deprecated anyway
	 * */
	return scalblnl(x, (long int) y);
}

/*
 * The below require support for ynl/jnl which doesn't exist in musl and isn't
 * implemented in gcompat yet
 */
#if 0
/**
 * Return Bessel functions of x of the first kind of order n.
 */
long double jnl(int n, long double x)
{
	/* TODO implement */
	return 0;
}

/**
 * Return Bessel functions of x of the first kind of order 0.
 */
long double j0l(long double n)
{
	return jnl(0, n);
}

/**
 * Return Bessel functions of x of the first kind of order 1.
 */
long double j1l(long double n)
{
	return jnl(1, n);
}

/**
 * Return Bessel functions of x of the second kind of order n.
 */
long double ynl(int n, long double x)
{
	/* TODO implement */
	return 0;
}

/**
 * Return Bessel functions of x of the second kind of order 0.
 */
long double y0l(long double n)
{
	return ynl(0, n);
}

/**
 * Return Bessel functions of x of the second kind of order 1.
 */
long double y1l(long double n)
{
	return ynl(1, n);
}
#endif

/**
 * Test for finite value.
 */
int __finite(double arg)
{
	return isfinite(arg);
}
weak_alias(__finite, finite);

/**
 * Test for finite value.
 */
int __finitef(float arg)
{
	return isfinite(arg);
}
weak_alias(__finitef, finitef);

/**
 * Test for finite value.
 */
int __finitel(long double arg)
{
	return isfinite(arg);
}
weak_alias(__finitel, finitel);

/**
 * Test for infinity.
 *
 * LSB 5.0: LSB-Core-generic/baselib---isinf.html
 */
int __isinf(double arg)
{
	return isinf(arg);
}
weak_alias(__isinf, isinf);

/**
 * Test for infinity.
 *
 * LSB 5.0: LSB-Core-generic/baselib---isinff.html
 */
int __isinff(float arg)
{
	return isinf(arg);
}
weak_alias(__isinff, isinff);

/**
 * Test for infinity.
 *
 * LSB 5.0: LSB-Core-generic/baselib---isinfl.html
 */
int __isinfl(long double arg)
{
	return isinf(arg);
}
weak_alias(__isinfl, isinfl);

/**
 * Test for a NaN.
 *
 * LSB 5.0: LSB-Core-generic/baselib---isnan.html
 */
int __isnan(double arg)
{
	return isnan(arg);
}
weak_alias(__isnan, isnan);

/**
 * Test for a NaN.
 *
 * LSB 5.0: LSB-Core-generic/baselib---isnanf.html
 */
int __isnanf(float arg)
{
	return isnan(arg);
}
weak_alias(__isnanf, isnanf);

/**
 * Test for a NaN.
 *
 * LSB 5.0: LSB-Core-generic/baselib---isnanl.html
 */
int __isnanl(long double arg)
{
	return isnan(arg);
}
weak_alias(__isnanl, isnanl);


/*
 * Finite specialisations of functions used by glibc, that aren't supposed to
 * return infinity.
 */

#define _ASSERT_FINITE(finite_fn, res)						\
	GCOMPAT__assert_with_reason(finite_fn(res),			\
		"infinite value returned in a function that returns a "	\
		"finite result");

#define ASSERT_FINITEF(res) _ASSERT_FINITE(isinff, res)
#define ASSERT_FINITE(res) _ASSERT_FINITE(isinf, res)
#define ASSERT_FINITEL(res) _ASSERT_FINITE(isinfl, res)

/**
 * Returns the principal value of the arc cosine of x, expressed in radians.
 */
float __acosf_finite(float x)
{
	float res = acosf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the principal value of the arc cosine of x, expressed in radians.
 */
double __acos_finite(double x)
{
	double res = acos(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the principal value of the arc cosine of x, expressed in radians.
 */
long double __acosl_finite(long double x)
{
	long double res = acosl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the nonnegative area hyperbolic cosine of x.
 */
double __acosh_finite(double x)
{
	double res = acosh(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the nonnegative area hyperbolic cosine of x.
 */
float __acoshf_finite(float x)
{
	float res = acoshf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the nonnegative area hyperbolic cosine of x.
 */
long double __acoshl_finite(long double x)
{
	long double res = acoshl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the principal value of the arc sine of x, expressed in radians.
 */
float __asinf_finite(float x)
{
	float res = asinf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the principal value of the arc sine of x, expressed in radians.
 */
double __asin_finite(double x)
{
	double res = asin(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the principal value of the arc sine of x, expressed in radians.
 */
long double __asinl_finite(long double x)
{
	long double res = asinl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the principal value of the arc tangent of x/y, expressed in radians.
 */
float __atan2f_finite(float x, float y)
{
	float res = atan2f(x, y);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the principal value of the arc tangent of x/y, expressed in radians.
 */
double __atan2_finite(double x, double y)
{
	double res = atan2(x, y);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the principal value of the arc tangent of x/y, expressed in radians.
 */
long double __atan2l_finite(long double x, long double y)
{
	long double res = atan2l(x, y);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the area hyperbolic tangent of x.
 */
float __atanhf_finite(float x)
{
	float res = atanhf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the area hyperbolic tangent of x.
 */
double __atanh_finite(double x)
{
	double res = atanh(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the area hyperbolic tangent of x.
 */
long double __atanhl_finite(long double x)
{
	long double res = atanhl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the hyperbolic cosine of x.
 */
float __coshf_finite(float x)
{
	float res = coshf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the hyperbolic cosine of x.
 */
double __cosh_finite(double x)
{
	double res = cosh(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the hyperbolic cosine of x.
 */
long double __coshl_finite(long double x)
{
	long double res = coshl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Return the value of 10 raised to the power of x.
 */
float __exp10f_finite(float x)
{
	float res = exp10f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return the value of 10 raised to the power of x.
 */
double __exp10_finite(double x)
{
	double res = exp10(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Return the value of 10 raised to the power of x.
 */
long double __exp10l_finite(long double x)
{
	long double res = exp10l(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the base-2 exponential function of x, which is 2 raised to the power x
 */
float __exp2f_finite(float x)
{
	float res = exp2f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the base-2 exponential function of x, which is 2 raised to the power x
 */
double __exp2_finite(double x)
{
	double res = exp2(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the base-2 exponential function of x, which is 2 raised to the power x
 */
long double __exp2l_finite(long double x)
{
	long double res = exp2l(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the base-e exponential function of x, which is e raised to the power x
 */
float __expf_finite(float x)
{
	float res = expf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the base-e exponential function of x, which is e raised to the power x
 */
double __exp_finite(double x)
{
	double res = exp(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the base-e exponential function of x, which is e raised to the power x
 */
long double __expl_finite(long double x)
{
	long double res = expl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the floating-point remainder of x/y (rounded towards zero)
 */
float __fmodf_finite(float x, float y)
{
	float res = fmodf(x, y);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the floating-point remainder of x/y (rounded towards zero)
 */
double __fmod_finite(double x, double y)
{
	double res = fmod(x, y);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the floating-point remainder of x/y (rounded towards zero)
 */
long double __fmodl_finite(long double x, long double y)
{
	long double res = fmodl(x, y);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Computes the square root of the sum of the squares of x and y, without undue
 * overflow or underflow at intermediate stages of the computation.
 */
float __hypotf_finite(float x, float y)
{
	float res = hypotf(x, y);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Computes the square root of the sum of the squares of x and y, without undue
 * overflow or underflow at intermediate stages of the computation.
 */
double __hypot_finite(double x, double y)
{
	double res = hypot(x, y);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Computes the square root of the sum of the squares of x and y, without undue
 * overflow or underflow at intermediate stages of the computation.
 */
long double __hypotl_finite(long double x, long double y)
{
	long double res = hypotl(x, y);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Return Bessel functions of x of the first kind of orders 0.
 */
float __j0f_finite(float x)
{
	float res = j0f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return Bessel functions of x of the first kind of orders 0.
 */
double __j0_finite(double x)
{
	double res = j0(x);

	ASSERT_FINITE(res);

	return res;
}

/* The below requires support for j0l, see above */
#if 0
/**
 * Return Bessel functions of x of the first kind of orders 0.
 */
long double __j0l_finite(long double x)
{
	long double res = j0l(x);

	ASSERT_FINITEL(res);

	return res;
}
#endif

/**
 * Return Bessel functions of x of the first kind of orders 1.
 */
float __j1f_finite(float x)
{
	float res = j1f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return Bessel functions of x of the first kind of orders 1.
 */
double __j1_finite(double x)
{
	double res = j1(x);

	ASSERT_FINITE(res);

	return res;
}

/* The below requires support for j1l, see above */
#if 0
/**
 * Return Bessel functions of x of the first kind of orders 1.
 */
long double __j1l_finite(long double x)
{
	long double res = j1l(x);

	ASSERT_FINITEL(res);

	return res;
}
#endif

/**
 * Return the Bessel function of x of the first kind of order n.
 */
float __jnf_finite(int n, float x)
{
	float res = jnf(n, x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return the Bessel function of x of the first kind of order n.
 */
double __jn_finite(int n, double x)
{
	double res = jn(n, x);

	ASSERT_FINITE(res);

	return res;
}

/* The below requires support for jnl, see above */
#if 0
/**
 * Return the Bessel function of x of the first kind of order n.
 */
long double __jnl_finite(int n, long double x)
{
	long double res = jnl(n, x);

	ASSERT_FINITEL(res);

	return res;
}
#endif

/**
 * Returns the natural logarithm of the absolute value of the Gamma function.
 */
float __lgammaf_finite(float x)
{
	float res = lgammaf(x);

	ASSERT_FINITEF(res);

	return res;
}
alias(__lgammaf_finite, __gammaf_finite);

/**
 * Returns the natural logarithm of the absolute value of the Gamma function.
 */
double __lgamma_finite(double x)
{
	double res = lgamma(x);

	ASSERT_FINITE(res);

	return res;
}
alias(__lgamma_finite, __gamma_finite);

/**
 * Returns the natural logarithm of the absolute value of the Gamma function.
 */
long double __lgammal_finite(long double x)
{
	long double res = lgammal(x);

	ASSERT_FINITEL(res);

	return res;
}
alias(__lgammal_finite, __gammal_finite);

/**
 * Returns the natural logarithm of the absolute value of the Gamma function.
 */
float __lgammaf_r_finite(float x, int *p)
{
	float res = lgammaf_r(x, p);

	ASSERT_FINITEF(res);

	return res;
}
alias(__lgammaf_r_finite, __gammaf_r_finite);

/**
 * Returns the natural logarithm of the absolute value of the Gamma function.
 */
double __lgamma_r_finite(double x, int *p)
{
	double res = lgamma_r(x, p);

	ASSERT_FINITE(res);

	return res;
}
alias(__lgamma_r_finite, __gamma_r_finite);

/**
 * Returns the natural logarithm of the absolute value of the Gamma function.
 */
long double __lgammal_r_finite(long double x, int *p)
{
	long double res = lgammal_r(x, p);

	ASSERT_FINITEL(res);

	return res;
}
alias(__lgammal_r_finite, __gammal_r_finite);

/**
 * Returns the common (base-10) logarithm of x.
 */
float __log10f_finite(float x)
{
	float res = log10f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the common (base-10) logarithm of x.
 */
double __log10_finite(double x)
{
	double res = log10(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the common (base-10) logarithm of x.
 */
long double __log10l_finite(long double x)
{
	long double res = log10l(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the binary (base-2) logarithm of x.
 */
float __log2f_finite(float x)
{
	float res = log2f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the binary (base-2) logarithm of x.
 */
double __log2_finite(double x)
{
	double res = log2(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the binary (base-2) logarithm of x.
 */
long double __log2l_finite(long double x)
{
	long double res = log2l(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the natural logarithm of x.
 */
float __logf_finite(float x)
{
	float res = logf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the natural logarithm of x.
 */
double __log_finite(double x)
{
	double res = log(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the natural logarithm of x.
 */
long double __logl_finite(long double x)
{
	long double res = logl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns x raised to the y exponent.
 */
float __powf_finite(float x, float y)
{
	float res = powf(x, y);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns x raised to the y exponent.
 */
double __pow_finite(double x, double y)
{
	double res = pow(x, y);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns x raised to the y exponent.
 */
long double __powl_finite(long double x, long double y)
{
	long double res = powl(x, y);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the floating-point remainder of x/y (rounded to nearest).
 */
float __remainderf_finite(float x, float y)
{
	float res = remainderf(x, y);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the floating-point remainder of x/y (rounded to nearest).
 */
double __remainder_finite(double x, double y)
{
	double res = remainder(x, y);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the floating-point remainder of x/y (rounded to nearest).
 */
long double __remainderl_finite(long double x, long double y)
{
	long double res = remainderl(x, y);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Multiplies the first argument x by FLT_RADIX (probably 2) to the power of y.
 */
float __scalbf_finite(float x, float y)
{
	float res = scalbf(x, y);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Multiplies the first argument x by FLT_RADIX (probably 2) to the power of y.
 */
double __scalb_finite(double x, double y)
{
	double res = scalb(x, y);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Multiplies the first argument x by FLT_RADIX (probably 2) to the power of y.
 */
long double __scalbl_finite(long double x, long double y)
{
	long double res = scalbl(x, y);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the hyperbolic sine of x.
 */
float __sinhf_finite(float x)
{
	float res = sinhf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the hyperbolic sine of x.
 */
double __sinh_finite(double x)
{
	double res = sinh(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the hyperbolic sine of x.
 */
long double __sinhl_finite(long double x)
{
	long double res = sinhl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Returns the square root of x.
 */
float __sqrtf_finite(float x)
{
	float res = sqrtf(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Returns the square root of x.
 */
double __sqrt_finite(double x)
{
	double res = sqrt(x);

	ASSERT_FINITE(res);

	return res;
}

/**
 * Returns the square root of x.
 */
long double __sqrtl_finite(long double x)
{
	long double res = sqrtl(x);

	ASSERT_FINITEL(res);

	return res;
}

/**
 * Return Bessel functions of x of the second kind of order 0.
 */
float __y0f_finite(float x)
{
	float res = y0f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return Bessel functions of x of the second kind of order 0.
 */
double __y0_finite(double x)
{
	double res = y0(x);

	ASSERT_FINITE(res);

	return res;
}

/* The below requires support for y0l, see above */
#if 0
/**
 * Return Bessel functions of x of the second kind of order 0.
 */
long double __y0l_finite(long double x)
{
	long double res = y0l(x);

	ASSERT_FINITEL(res);

	return res;
}
#endif

/**
 * Return Bessel functions of x of the second kind of order 1.
 */
float __y1f_finite(float x)
{
	float res = y1f(x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return Bessel functions of x of the second kind of order 1.
 */
double __y1_finite(double x)
{
	double res = y1(x);

	ASSERT_FINITE(res);

	return res;
}

/* The below requires support for y1l, see above */
#if 0
/**
 * Return Bessel functions of x of the second kind of order 1.
 */
long double __y1l_finite(long double x)
{
	long double res = y1l(x);

	ASSERT_FINITEL(res);

	return res;
}
#endif

/**
 * Return Bessel functions of x of the second kind of order n.
 */
float __ynf_finite(int n, float x)
{
	float res = ynf(n, x);

	ASSERT_FINITEF(res);

	return res;
}

/**
 * Return Bessel functions of x of the second kind of order n.
 */
double __yn_finite(int n, double x)
{
	double res = yn(n, x);

	ASSERT_FINITE(res);

	return res;
}

/* The below requires support for ynl, see above */
#if 0
/**
 * Return Bessel functions of x of the second kind of order n.
 */
long double __ynl_finite(int n, long double x)
{
	long double res = ynl(n, x);

	ASSERT_FINITEL(res);

	return res;
}
#endif