#include <aio.h>
#include <pthread.h>
#include <semaphore.h>
#include <limits.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/auxv.h>
#include "syscall.h"
#include "atomic.h"
#include "pthread_impl.h"
#include "aio_impl.h"
/* The following is a threads-based implementation of AIO with minimal
* dependence on implementation details. Most synchronization is
* performed with pthread primitives, but atomics and futex operations
* are used for notification in a couple places where the pthread
* primitives would be inefficient or impractical.
*
* For each fd with outstanding aio operations, an aio_queue structure
* is maintained. These are reference-counted and destroyed by the last
* aio worker thread to exit. Accessing any member of the aio_queue
* structure requires a lock on the aio_queue. Adding and removing aio
* queues themselves requires a write lock on the global map object,
* a 4-level table mapping file descriptor numbers to aio queues. A
* read lock on the map is used to obtain locks on existing queues by
* excluding destruction of the queue by a different thread while it is
* being locked.
*
* Each aio queue has a list of active threads/operations. Presently there
* is a one to one relationship between threads and operations. The only
* members of the aio_thread structure which are accessed by other threads
* are the linked list pointers, op (which is immutable), running (which
* is updated atomically), and err (which is synchronized via running),
* so no locking is necessary. Most of the other other members are used
* for sharing data between the main flow of execution and cancellation
* cleanup handler.
*
* Taking any aio locks requires having all signals blocked. This is
* necessary because aio_cancel is needed by close, and close is required
* to be async-signal safe. All aio worker threads run with all signals
* blocked permanently.
*/
struct aio_thread {
pthread_t td;
struct aiocb *cb;
struct aio_thread *next, *prev;
struct aio_queue *q;
volatile int running;
int err, op;
ssize_t ret;
};
struct aio_queue {
int fd, seekable, append, ref, init;
pthread_mutex_t lock;
pthread_cond_t cond;
struct aio_thread *head;
};
struct aio_args {
struct aiocb *cb;
struct aio_queue *q;
int op;
sem_t sem;
};
static pthread_rwlock_t maplock = PTHREAD_RWLOCK_INITIALIZER;
static struct aio_queue *****map;
static volatile int aio_fd_cnt;
volatile int __aio_fut;
static struct aio_queue *__aio_get_queue(int fd, int need)
{
if (fd < 0) {
errno = EBADF;
return 0;
}
int a=fd>>24;
unsigned char b=fd>>16, c=fd>>8, d=fd;
struct aio_queue *q = 0;
pthread_rwlock_rdlock(&maplock);
if ((!map || !map[a] || !map[a][b] || !map[a][b][c] || !(q=map[a][b][c][d])) && need) {
pthread_rwlock_unlock(&maplock);
if (fcntl(fd, F_GETFD) < 0) return 0;
pthread_rwlock_wrlock(&maplock);
if (!map) map = calloc(sizeof *map, (-1U/2+1)>>24);
if (!map) goto out;
if (!map[a]) map[a] = calloc(sizeof **map, 256);
if (!map[a]) goto out;
if (!map[a][b]) map[a][b] = calloc(sizeof ***map, 256);
if (!map[a][b]) goto out;
if (!map[a][b][c]) map[a][b][c] = calloc(sizeof ****map, 256);
if (!map[a][b][c]) goto out;
if (!(q = map[a][b][c][d])) {
map[a][b][c][d] = q = calloc(sizeof *****map, 1);
if (q) {
q->fd = fd;
pthread_mutex_init(&q->lock, 0);
pthread_cond_init(&q->cond, 0);
a_inc(&aio_fd_cnt);
}
}
}
if (q) pthread_mutex_lock(&q->lock);
out:
pthread_rwlock_unlock(&maplock);
return q;
}
static void __aio_unref_queue(struct aio_queue *q)
{
if (q->ref > 1) {
q->ref--;
pthread_mutex_unlock(&q->lock);
return;
}
/* This is potentially the last reference, but a new reference
* may arrive since we cannot free the queue object without first
* taking the maplock, which requires releasing the queue lock. */
pthread_mutex_unlock(&q->lock);
pthread_rwlock_wrlock(&maplock);
pthread_mutex_lock(&q->lock);
if (q->ref == 1) {
int fd=q->fd;
int a=fd>>24;
unsigned char b=fd>>16, c=fd>>8, d=fd;
map[a][b][c][d] = 0;
a_dec(&aio_fd_cnt);
pthread_rwlock_unlock(&maplock);
pthread_mutex_unlock(&q->lock);
free(q);
} else {
q->ref--;
pthread_rwlock_unlock(&maplock);
pthread_mutex_unlock(&q->lock);
}
}
static void cleanup(void *ctx)
{
struct aio_thread *at = ctx;
struct aio_queue *q = at->q;
struct aiocb *cb = at->cb;
struct sigevent sev = cb->aio_sigevent;
/* There are four potential types of waiters we could need to wake:
* 1. Callers of aio_cancel/close.
* 2. Callers of aio_suspend with a single aiocb.
* 3. Callers of aio_suspend with a list.
* 4. AIO worker threads waiting for sequenced operations.
* Types 1-3 are notified via atomics/futexes, mainly for AS-safety
* considerations. Type 4 is notified later via a cond var. */
cb->__ret = at->ret;
if (a_swap(&at->running, 0) < 0)
__wake(&at->running, -1, 1);
if (a_swap(&cb->__err, at->err) != EINPROGRESS)
__wake(&cb->__err, -1, 1);
if (a_swap(&__aio_fut, 0))
__wake(&__aio_fut, -1, 1);
pthread_mutex_lock(&q->lock);
if (at->next) at->next->prev = at->prev;
if (at->prev) at->prev->next = at->next;
else q->head = at->next;
/* Signal aio worker threads waiting for sequenced operations. */
pthread_cond_broadcast(&q->cond);
__aio_unref_queue(q);
if (sev.sigev_notify == SIGEV_SIGNAL) {
siginfo_t si = {
.si_signo = sev.sigev_signo,
.si_value = sev.sigev_value,
.si_code = SI_ASYNCIO,
.si_pid = getpid(),
.si_uid = getuid()
};
__syscall(SYS_rt_sigqueueinfo, si.si_pid, si.si_signo, &si);
}
if (sev.sigev_notify == SIGEV_THREAD) {
a_store(&__pthread_self()->cancel, 0);
sev.sigev_notify_function(sev.sigev_value);
}
}
static void *io_thread_func(void *ctx)
{
struct aio_thread at, *p;
struct aio_args *args = ctx;
struct aiocb *cb = args->cb;
int fd = cb->aio_fildes;
int op = args->op;
void *buf = (void *)cb->aio_buf;
size_t len = cb->aio_nbytes;
off_t off = cb->aio_offset;
struct aio_queue *q = args->q;
ssize_t ret;
pthread_mutex_lock(&q->lock);
sem_post(&args->sem);
at.op = op;
at.running = 1;
at.ret = -1;
at.err = ECANCELED;
at.q = q;
at.td = __pthread_self();
at.cb = cb;
at.prev = 0;
if ((at.next = q->head)) at.next->prev = &at;
q->head = &at;
if (!q->init) {
int seekable = lseek(fd, 0, SEEK_CUR) >= 0;
q->seekable = seekable;
q->append = !seekable || (fcntl(fd, F_GETFL) & O_APPEND);
q->init = 1;
}
pthread_cleanup_push(cleanup, &at);
/* Wait for sequenced operations. */
if (op!=LIO_READ && (op!=LIO_WRITE || q->append)) {
for (;;) {
for (p=at.next; p && p->op!=LIO_WRITE; p=p->next);
if (!p) break;
pthread_cond_wait(&q->cond, &q->lock);
}
}
pthread_mutex_unlock(&q->lock);
switch (op) {
case LIO_WRITE:
ret = q->append ? write(fd, buf, len) : pwrite(fd, buf, len, off);
break;
case LIO_READ:
ret = !q->seekable ? read(fd, buf, len) : pread(fd, buf, len, off);
break;
case O_SYNC:
ret = fsync(fd);
break;
case O_DSYNC:
ret = fdatasync(fd);
break;
}
at.ret = ret;
at.err = ret<0 ? errno : 0;
pthread_cleanup_pop(1);
return 0;
}
static size_t io_thread_stack_size = MINSIGSTKSZ+2048;
static pthread_once_t init_stack_size_once;
static void init_stack_size()
{
unsigned long val = __getauxval(AT_MINSIGSTKSZ);
if (val > MINSIGSTKSZ) io_thread_stack_size = val + 512;
}
static int submit(struct aiocb *cb, int op)
{
int ret = 0;
pthread_attr_t a;
sigset_t allmask, origmask;
pthread_t td;
struct aio_queue *q = __aio_get_queue(cb->aio_fildes, 1);
struct aio_args args = { .cb = cb, .op = op, .q = q };
sem_init(&args.sem, 0, 0);
if (!q) {
if (errno != EBADF) errno = EAGAIN;
cb->__ret = -1;
cb->__err = errno;
return -1;
}
q->ref++;
pthread_mutex_unlock(&q->lock);
if (cb->aio_sigevent.sigev_notify == SIGEV_THREAD) {
if (cb->aio_sigevent.sigev_notify_attributes)
a = *cb->aio_sigevent.sigev_notify_attributes;
else
pthread_attr_init(&a);
} else {
pthread_once(&init_stack_size_once, init_stack_size);
pthread_attr_init(&a);
pthread_attr_setstacksize(&a, io_thread_stack_size);
pthread_attr_setguardsize(&a, 0);
}
pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
sigfillset(&allmask);
pthread_sigmask(SIG_BLOCK, &allmask, &origmask);
cb->__err = EINPROGRESS;
if (pthread_create(&td, &a, io_thread_func, &args)) {
pthread_mutex_lock(&q->lock);
__aio_unref_queue(q);
cb->__err = errno = EAGAIN;
cb->__ret = ret = -1;
}
pthread_sigmask(SIG_SETMASK, &origmask, 0);
if (!ret) {
while (sem_wait(&args.sem));
}
return ret;
}
int aio_read(struct aiocb *cb)
{
return submit(cb, LIO_READ);
}
int aio_write(struct aiocb *cb)
{
return submit(cb, LIO_WRITE);
}
int aio_fsync(int op, struct aiocb *cb)
{
if (op != O_SYNC && op != O_DSYNC) {
errno = EINVAL;
return -1;
}
return submit(cb, op);
}
ssize_t aio_return(struct aiocb *cb)
{
return cb->__ret;
}
int aio_error(const struct aiocb *cb)
{
a_barrier();
return cb->__err & 0x7fffffff;
}
int aio_cancel(int fd, struct aiocb *cb)
{
sigset_t allmask, origmask;
int ret = AIO_ALLDONE;
struct aio_thread *p;
struct aio_queue *q;
/* Unspecified behavior case. Report an error. */
if (cb && fd != cb->aio_fildes) {
errno = EINVAL;
return -1;
}
sigfillset(&allmask);
pthread_sigmask(SIG_BLOCK, &allmask, &origmask);
errno = ENOENT;
if (!(q = __aio_get_queue(fd, 0))) {
if (errno == EBADF) ret = -1;
goto done;
}
for (p = q->head; p; p = p->next) {
if (cb && cb != p->cb) continue;
/* Transition target from running to running-with-waiters */
if (a_cas(&p->running, 1, -1)) {
pthread_cancel(p->td);
__wait(&p->running, 0, -1, 1);
if (p->err == ECANCELED) ret = AIO_CANCELED;
}
}
pthread_mutex_unlock(&q->lock);
done:
pthread_sigmask(SIG_SETMASK, &origmask, 0);
return ret;
}
int __aio_close(int fd)
{
a_barrier();
if (aio_fd_cnt) aio_cancel(fd, 0);
return fd;
}
void __aio_atfork(int who)
{
if (who<0) {
pthread_rwlock_rdlock(&maplock);
return;
}
if (who>0 && map) for (int a=0; a<(-1U/2+1)>>24; a++)
if (map[a]) for (int b=0; b<256; b++)
if (map[a][b]) for (int c=0; c<256; c++)
if (map[a][b][c]) for (int d=0; d<256; d++)
map[a][b][c][d] = 0;
pthread_rwlock_unlock(&maplock);
}
weak_alias(aio_cancel, aio_cancel64);
weak_alias(aio_error, aio_error64);
weak_alias(aio_fsync, aio_fsync64);
weak_alias(aio_read, aio_read64);
weak_alias(aio_write, aio_write64);
weak_alias(aio_return, aio_return64);