blob: 21e6c95e8cba60bdeaa278a1c814d8418c1d10bd (
plain) (
tree)
|
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_acosl.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* See comments in acos.c.
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double acosl(long double x)
{
return acos(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#include "__invtrigl.h"
static const long double
one = 1.00000000000000000000e+00;
// FIXME
//#ifdef __i386__
/* XXX Work around the fact that gcc truncates long double constants on i386 */
static volatile double
pi1 = 3.14159265358979311600e+00, /* 0x1.921fb54442d18p+1 */
pi2 = 1.22514845490862001043e-16; /* 0x1.1a80000000000p-53 */
#define pi ((long double)pi1 + pi2)
//#else
#if 0
static const long double
pi = 3.14159265358979323846264338327950280e+00L;
#endif
long double acosl(long double x)
{
union IEEEl2bits u;
long double z, p, q, r, w, s, c, df;
int16_t expsign, expt;
u.e = x;
expsign = u.xbits.expsign;
expt = expsign & 0x7fff;
if (expt >= BIAS) { /* |x| >= 1 */
if (expt == BIAS &&
((u.bits.manh & ~LDBL_NBIT) | u.bits.manl) == 0) {
if (expsign > 0)
return 0.0; /* acos(1) = 0 */
else
return pi + 2.0 * pio2_lo; /* acos(-1)= pi */
}
return (x - x) / (x - x); /* acos(|x|>1) is NaN */
}
if (expt < BIAS - 1) { /* |x| < 0.5 */
if (expt < ACOS_CONST)
return pio2_hi + pio2_lo; /* x tiny: acosl=pi/2 */
z = x * x;
p = P(z);
q = Q(z);
r = p / q;
return pio2_hi - (x - (pio2_lo - x * r));
} else if (expsign < 0) { /* x < -0.5 */
z = (one + x) * 0.5;
p = P(z);
q = Q(z);
s = sqrtl(z);
r = p / q;
w = r * s - pio2_lo;
return pi - 2.0 * (s + w);
} else { /* x > 0.5 */
z = (one - x) * 0.5;
s = sqrtl(z);
u.e = s;
u.bits.manl = 0;
df = u.e;
c = (z - df * df) / (s + df);
p = P(z);
q = Q(z);
r = p / q;
w = r * s + c;
return 2.0 * (df + w);
}
}
#endif
|