diff options
author | Rich Felker <dalias@aerifal.cx> | 2012-03-13 01:17:53 -0400 |
---|---|---|
committer | Rich Felker <dalias@aerifal.cx> | 2012-03-13 01:17:53 -0400 |
commit | b69f695acedd4ce2798ef9ea28d834ceccc789bd (patch) | |
tree | eafd98b9b75160210f3295ac074d699f863d958e /src/math/jnf.c | |
parent | d46cf2e14cc4df7cc75e77d7009fcb6df1f48a33 (diff) | |
download | musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.gz musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.bz2 musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.xz musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.zip |
first commit of the new libm!
thanks to the hard work of Szabolcs Nagy (nsz), identifying the best
(from correctness and license standpoint) implementations from freebsd
and openbsd and cleaning them up! musl should now fully support c99
float and long double math functions, and has near-complete complex
math support. tgmath should also work (fully on gcc-compatible
compilers, and mostly on any c99 compiler).
based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from
nsz's libm git repo, with some additions (dummy versions of a few
missing long double complex functions, etc.) by me.
various cleanups still need to be made, including re-adding (if
they're correct) some asm functions that were dropped.
Diffstat (limited to 'src/math/jnf.c')
-rw-r--r-- | src/math/jnf.c | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/src/math/jnf.c b/src/math/jnf.c new file mode 100644 index 00000000..7db93ae7 --- /dev/null +++ b/src/math/jnf.c @@ -0,0 +1,213 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ +/* + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include "libm.h" + +static const float +two = 2.0000000000e+00, /* 0x40000000 */ +one = 1.0000000000e+00; /* 0x3F800000 */ + +static const float zero = 0.0000000000e+00; + +float jnf(int n, float x) +{ + int32_t i,hx,ix, sgn; + float a, b, temp, di; + float z, w; + + /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) + * Thus, J(-n,x) = J(n,-x) + */ + GET_FLOAT_WORD(hx, x); + ix = 0x7fffffff & hx; + /* if J(n,NaN) is NaN */ + if (ix > 0x7f800000) + return x+x; + if (n < 0) { + n = -n; + x = -x; + hx ^= 0x80000000; + } + if (n == 0) return j0f(x); + if (n == 1) return j1f(x); + + sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ + x = fabsf(x); + if (ix == 0 || ix >= 0x7f800000) /* if x is 0 or inf */ + b = zero; + else if((float)n <= x) { + /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ + a = j0f(x); + b = j1f(x); + for (i=1; i<n; i++){ + temp = b; + b = b*((float)(i+i)/x) - a; /* avoid underflow */ + a = temp; + } + } else { + if (ix < 0x30800000) { /* x < 2**-29 */ + /* x is tiny, return the first Taylor expansion of J(n,x) + * J(n,x) = 1/n!*(x/2)^n - ... + */ + if (n > 33) /* underflow */ + b = zero; + else { + temp = x*(float)0.5; + b = temp; + for (a=one,i=2; i<=n; i++) { + a *= (float)i; /* a = n! */ + b *= temp; /* b = (x/2)^n */ + } + b = b/a; + } + } else { + /* use backward recurrence */ + /* x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h=2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quadruple + */ + /* determine k */ + float t,v; + float q0,q1,h,tmp; + int32_t k,m; + + w = (n+n)/(float)x; + h = (float)2.0/(float)x; + z = w+h; + q0 = w; + q1 = w*z - (float)1.0; + k = 1; + while (q1 < (float)1.0e9) { + k += 1; + z += h; + tmp = z*q1 - q0; + q0 = q1; + q1 = tmp; + } + m = n+n; + for (t=zero, i = 2*(n+k); i>=m; i -= 2) + t = one/(i/x-t); + a = t; + b = one; + /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * Hence, if n*(log(2n/x)) > ... + * single 8.8722839355e+01 + * double 7.09782712893383973096e+02 + * long double 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result is + * likely underflow to zero + */ + tmp = n; + v = two/x; + tmp = tmp*logf(fabsf(v*tmp)); + if (tmp < (float)8.8721679688e+01) { + for (i=n-1,di=(float)(i+i); i>0; i--) { + temp = b; + b *= di; + b = b/x - a; + a = temp; + di -= two; + } + } else { + for (i=n-1,di=(float)(i+i); i>0; i--){ + temp = b; + b *= di; + b = b/x - a; + a = temp; + di -= two; + /* scale b to avoid spurious overflow */ + if (b > (float)1e10) { + a /= b; + t /= b; + b = one; + } + } + } + z = j0f(x); + w = j1f(x); + if (fabsf(z) >= fabsf(w)) + b = t*z/b; + else + b = t*w/a; + } + } + if (sgn == 1) return -b; + return b; +} + +float ynf(int n, float x) +{ + int32_t i,hx,ix,ib; + int32_t sign; + float a, b, temp; + + GET_FLOAT_WORD(hx, x); + ix = 0x7fffffff & hx; + /* if Y(n,NaN) is NaN */ + if (ix > 0x7f800000) + return x+x; + if (ix == 0) + return -one/zero; + if (hx < 0) + return zero/zero; + sign = 1; + if (n < 0) { + n = -n; + sign = 1 - ((n&1)<<1); + } + if (n == 0) + return y0f(x); + if (n == 1) + return sign*y1f(x); + if (ix == 0x7f800000) + return zero; + + a = y0f(x); + b = y1f(x); + /* quit if b is -inf */ + GET_FLOAT_WORD(ib,b); + for (i = 1; i < n && ib != 0xff800000; i++){ + temp = b; + b = ((float)(i+i)/x)*b - a; + GET_FLOAT_WORD(ib, b); + a = temp; + } + if (sign > 0) + return b; + return -b; +} |