summaryrefslogtreecommitdiff
path: root/src/math/tgammal.c
diff options
context:
space:
mode:
authorRich Felker <dalias@aerifal.cx>2012-03-13 01:17:53 -0400
committerRich Felker <dalias@aerifal.cx>2012-03-13 01:17:53 -0400
commitb69f695acedd4ce2798ef9ea28d834ceccc789bd (patch)
treeeafd98b9b75160210f3295ac074d699f863d958e /src/math/tgammal.c
parentd46cf2e14cc4df7cc75e77d7009fcb6df1f48a33 (diff)
downloadmusl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.gz
musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.bz2
musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.xz
musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.zip
first commit of the new libm!
thanks to the hard work of Szabolcs Nagy (nsz), identifying the best (from correctness and license standpoint) implementations from freebsd and openbsd and cleaning them up! musl should now fully support c99 float and long double math functions, and has near-complete complex math support. tgmath should also work (fully on gcc-compatible compilers, and mostly on any c99 compiler). based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from nsz's libm git repo, with some additions (dummy versions of a few missing long double complex functions, etc.) by me. various cleanups still need to be made, including re-adding (if they're correct) some asm functions that were dropped.
Diffstat (limited to 'src/math/tgammal.c')
-rw-r--r--src/math/tgammal.c287
1 files changed, 287 insertions, 0 deletions
diff --git a/src/math/tgammal.c b/src/math/tgammal.c
new file mode 100644
index 00000000..e5905506
--- /dev/null
+++ b/src/math/tgammal.c
@@ -0,0 +1,287 @@
+/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_tgammal.c */
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+/*
+ * Gamma function
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, tgammal();
+ * extern int signgam;
+ *
+ * y = tgammal( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns gamma function of the argument. The result is
+ * correctly signed, and the sign (+1 or -1) is also
+ * returned in a global (extern) variable named signgam.
+ * This variable is also filled in by the logarithmic gamma
+ * function lgamma().
+ *
+ * Arguments |x| <= 13 are reduced by recurrence and the function
+ * approximated by a rational function of degree 7/8 in the
+ * interval (2,3). Large arguments are handled by Stirling's
+ * formula. Large negative arguments are made positive using
+ * a reflection formula.
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -40,+40 10000 3.6e-19 7.9e-20
+ * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
+ *
+ * Accuracy for large arguments is dominated by error in powl().
+ *
+ */
+
+#include "libm.h"
+
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
+long double tgammal(long double x)
+{
+ return tgamma(x);
+}
+#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
+/*
+tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
+0 <= x <= 1
+Relative error
+n=7, d=8
+Peak error = 1.83e-20
+Relative error spread = 8.4e-23
+*/
+static long double P[8] = {
+ 4.212760487471622013093E-5L,
+ 4.542931960608009155600E-4L,
+ 4.092666828394035500949E-3L,
+ 2.385363243461108252554E-2L,
+ 1.113062816019361559013E-1L,
+ 3.629515436640239168939E-1L,
+ 8.378004301573126728826E-1L,
+ 1.000000000000000000009E0L,
+};
+static long double Q[9] = {
+-1.397148517476170440917E-5L,
+ 2.346584059160635244282E-4L,
+-1.237799246653152231188E-3L,
+-7.955933682494738320586E-4L,
+ 2.773706565840072979165E-2L,
+-4.633887671244534213831E-2L,
+-2.243510905670329164562E-1L,
+ 4.150160950588455434583E-1L,
+ 9.999999999999999999908E-1L,
+};
+
+/*
+static long double P[] = {
+-3.01525602666895735709e0L,
+-3.25157411956062339893e1L,
+-2.92929976820724030353e2L,
+-1.70730828800510297666e3L,
+-7.96667499622741999770e3L,
+-2.59780216007146401957e4L,
+-5.99650230220855581642e4L,
+-7.15743521530849602425e4L
+};
+static long double Q[] = {
+ 1.00000000000000000000e0L,
+-1.67955233807178858919e1L,
+ 8.85946791747759881659e1L,
+ 5.69440799097468430177e1L,
+-1.98526250512761318471e3L,
+ 3.31667508019495079814e3L,
+ 1.60577839621734713377e4L,
+-2.97045081369399940529e4L,
+-7.15743521530849602412e4L
+};
+*/
+#define MAXGAML 1755.455L
+/*static const long double LOGPI = 1.14472988584940017414L;*/
+
+/* Stirling's formula for the gamma function
+tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
+z(x) = x
+13 <= x <= 1024
+Relative error
+n=8, d=0
+Peak error = 9.44e-21
+Relative error spread = 8.8e-4
+*/
+static long double STIR[9] = {
+ 7.147391378143610789273E-4L,
+-2.363848809501759061727E-5L,
+-5.950237554056330156018E-4L,
+ 6.989332260623193171870E-5L,
+ 7.840334842744753003862E-4L,
+-2.294719747873185405699E-4L,
+-2.681327161876304418288E-3L,
+ 3.472222222230075327854E-3L,
+ 8.333333333333331800504E-2L,
+};
+
+#define MAXSTIR 1024.0L
+static const long double SQTPI = 2.50662827463100050242E0L;
+
+/* 1/tgamma(x) = z P(z)
+ * z(x) = 1/x
+ * 0 < x < 0.03125
+ * Peak relative error 4.2e-23
+ */
+static long double S[9] = {
+-1.193945051381510095614E-3L,
+ 7.220599478036909672331E-3L,
+-9.622023360406271645744E-3L,
+-4.219773360705915470089E-2L,
+ 1.665386113720805206758E-1L,
+-4.200263503403344054473E-2L,
+-6.558780715202540684668E-1L,
+ 5.772156649015328608253E-1L,
+ 1.000000000000000000000E0L,
+};
+
+/* 1/tgamma(-x) = z P(z)
+ * z(x) = 1/x
+ * 0 < x < 0.03125
+ * Peak relative error 5.16e-23
+ * Relative error spread = 2.5e-24
+ */
+static long double SN[9] = {
+ 1.133374167243894382010E-3L,
+ 7.220837261893170325704E-3L,
+ 9.621911155035976733706E-3L,
+-4.219773343731191721664E-2L,
+-1.665386113944413519335E-1L,
+-4.200263503402112910504E-2L,
+ 6.558780715202536547116E-1L,
+ 5.772156649015328608727E-1L,
+-1.000000000000000000000E0L,
+};
+
+static const long double PIL = 3.1415926535897932384626L;
+
+/* Gamma function computed by Stirling's formula.
+ */
+static long double stirf(long double x)
+{
+ long double y, w, v;
+
+ w = 1.0L/x;
+ /* For large x, use rational coefficients from the analytical expansion. */
+ if (x > 1024.0L)
+ w = (((((6.97281375836585777429E-5L * w
+ + 7.84039221720066627474E-4L) * w
+ - 2.29472093621399176955E-4L) * w
+ - 2.68132716049382716049E-3L) * w
+ + 3.47222222222222222222E-3L) * w
+ + 8.33333333333333333333E-2L) * w
+ + 1.0L;
+ else
+ w = 1.0L + w * __polevll(w, STIR, 8);
+ y = expl(x);
+ if (x > MAXSTIR) { /* Avoid overflow in pow() */
+ v = powl(x, 0.5L * x - 0.25L);
+ y = v * (v / y);
+ } else {
+ y = powl(x, x - 0.5L) / y;
+ }
+ y = SQTPI * y * w;
+ return y;
+}
+
+long double tgammal(long double x)
+{
+ long double p, q, z;
+ int i;
+
+ signgam = 1;
+ if (isnan(x))
+ return NAN;
+ if (x == INFINITY)
+ return INFINITY;
+ if (x == -INFINITY)
+ return x - x;
+ q = fabsl(x);
+ if (q > 13.0L) {
+ if (q > MAXGAML)
+ goto goverf;
+ if (x < 0.0L) {
+ p = floorl(q);
+ if (p == q)
+ return (x - x) / (x - x);
+ i = p;
+ if ((i & 1) == 0)
+ signgam = -1;
+ z = q - p;
+ if (z > 0.5L) {
+ p += 1.0L;
+ z = q - p;
+ }
+ z = q * sinl(PIL * z);
+ z = fabsl(z) * stirf(q);
+ if (z <= PIL/LDBL_MAX) {
+goverf:
+ return signgam * INFINITY;
+ }
+ z = PIL/z;
+ } else {
+ z = stirf(x);
+ }
+ return signgam * z;
+ }
+
+ z = 1.0L;
+ while (x >= 3.0L) {
+ x -= 1.0L;
+ z *= x;
+ }
+ while (x < -0.03125L) {
+ z /= x;
+ x += 1.0L;
+ }
+ if (x <= 0.03125L)
+ goto small;
+ while (x < 2.0L) {
+ z /= x;
+ x += 1.0L;
+ }
+ if (x == 2.0L)
+ return z;
+
+ x -= 2.0L;
+ p = __polevll(x, P, 7);
+ q = __polevll(x, Q, 8);
+ z = z * p / q;
+ if(z < 0)
+ signgam = -1;
+ return z;
+
+small:
+ if (x == 0.0L)
+ return (x - x) / (x - x);
+ if (x < 0.0L) {
+ x = -x;
+ q = z / (x * __polevll(x, SN, 8));
+ signgam = -1;
+ } else
+ q = z / (x * __polevll(x, S, 8));
+ return q;
+}
+#endif