diff options
author | Rich Felker <dalias@aerifal.cx> | 2012-11-18 15:19:35 -0500 |
---|---|---|
committer | Rich Felker <dalias@aerifal.cx> | 2012-11-18 15:19:35 -0500 |
commit | 19b1a8453e9d329a16711900a84797c5f1333208 (patch) | |
tree | 300523fbbcc703379e87b3a819f2abf515f3b9a3 /src | |
parent | 8d2887f88475bb26ff4d48b661e26265a74e73bb (diff) | |
parent | a764db9a086ca036d4fc9181f96d19ab312a6560 (diff) | |
download | musl-19b1a8453e9d329a16711900a84797c5f1333208.tar.gz musl-19b1a8453e9d329a16711900a84797c5f1333208.tar.bz2 musl-19b1a8453e9d329a16711900a84797c5f1333208.tar.xz musl-19b1a8453e9d329a16711900a84797c5f1333208.zip |
Merge remote-tracking branch 'nsz/math'
Diffstat (limited to 'src')
-rw-r--r-- | src/math/exp.c | 123 | ||||
-rw-r--r-- | src/math/exp10f.c | 2 | ||||
-rw-r--r-- | src/math/exp2.c | 53 | ||||
-rw-r--r-- | src/math/exp2f.c | 30 | ||||
-rw-r--r-- | src/math/exp2l.c | 59 | ||||
-rw-r--r-- | src/math/expf.c | 98 | ||||
-rw-r--r-- | src/math/expl.c | 43 |
7 files changed, 171 insertions, 237 deletions
diff --git a/src/math/exp.c b/src/math/exp.c index 29bf9609..5ec8f8a7 100644 --- a/src/math/exp.c +++ b/src/math/exp.c @@ -25,7 +25,7 @@ * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - * We use a special Remes algorithm on [0,0.34658] to generate + * We use a special Remez algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, @@ -36,15 +36,15 @@ * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes - * 2*r - * exp(r) = 1 + ------- - * R - r - * r*R1(r) + * 2*r + * exp(r) = 1 + ---------- + * R(r) - r + * r*c(r) * = 1 + r + ----------- (for better accuracy) - * 2 - R1(r) + * 2 - c(r) * where - * 2 4 10 - * R1(r) = r - (P1*r + P2*r + ... + P5*r ). + * 2 4 10 + * c(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have @@ -61,27 +61,16 @@ * * Misc. info. * For IEEE double - * if x > 7.09782712893383973096e+02 then exp(x) overflow - * if x < -7.45133219101941108420e+02 then exp(x) underflow - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. + * if x > 709.782712893383973096 then exp(x) overflows + * if x < -745.133219101941108420 then exp(x) underflows */ #include "libm.h" static const double -halF[2] = {0.5,-0.5,}, -huge = 1.0e+300, -o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ -u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ -ln2HI[2] = { 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ - -6.93147180369123816490e-01},/* 0xbfe62e42, 0xfee00000 */ -ln2LO[2] = { 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ - -1.90821492927058770002e-10},/* 0xbdea39ef, 0x35793c76 */ +half[2] = {0.5,-0.5}, +ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ +ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ @@ -89,68 +78,58 @@ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ -static const volatile double -twom1000 = 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0 */ - double exp(double x) { - double y,hi=0.0,lo=0.0,c,t,twopk; - int32_t k=0,xsb; + double hi, lo, c, xx; + int k, sign; uint32_t hx; GET_HIGH_WORD(hx, x); - xsb = (hx>>31)&1; /* sign bit of x */ + sign = hx>>31; hx &= 0x7fffffff; /* high word of |x| */ - /* filter out non-finite argument */ - if (hx >= 0x40862E42) { /* if |x| >= 709.78... */ - if (hx >= 0x7ff00000) { - uint32_t lx; - - GET_LOW_WORD(lx,x); - if (((hx&0xfffff)|lx) != 0) /* NaN */ - return x+x; - return xsb==0 ? x : 0.0; /* exp(+-inf)={inf,0} */ + /* special cases */ + if (hx >= 0x40862e42) { /* if |x| >= 709.78... */ + if (isnan(x)) + return x; + if (hx == 0x7ff00000 && sign) /* -inf */ + return 0; + if (x > 709.782712893383973096) { + /* overflow if x!=inf */ + STRICT_ASSIGN(double, x, 0x1p1023 * x); + return x; + } + if (x < -745.13321910194110842) { + /* underflow */ + STRICT_ASSIGN(double, x, 0x1p-1000 * 0x1p-1000); + return x; } - if (x > o_threshold) - return huge*huge; /* overflow */ - if (x < u_threshold) - return twom1000*twom1000; /* underflow */ } /* argument reduction */ - if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ - if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ - hi = x-ln2HI[xsb]; - lo = ln2LO[xsb]; - k = 1 - xsb - xsb; - } else { - k = (int)(invln2*x+halF[xsb]); - t = k; - hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ - lo = t*ln2LO[0]; - } + if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */ + k = (int)(invln2*x + half[sign]); + else + k = 1 - sign - sign; + hi = x - k*ln2hi; /* k*ln2hi is exact here */ + lo = k*ln2lo; STRICT_ASSIGN(double, x, hi - lo); - } else if(hx < 0x3e300000) { /* |x| < 2**-28 */ - /* raise inexact */ - if (huge+x > 1.0) - return 1.0+x; - } else + } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */ k = 0; + hi = x; + lo = 0; + } else { + /* inexact if x!=0 */ + FORCE_EVAL(0x1p1023 + x); + return 1 + x; + } /* x is now in primary range */ - t = x*x; - if (k >= -1021) - INSERT_WORDS(twopk, 0x3ff00000+(k<<20), 0); - else - INSERT_WORDS(twopk, 0x3ff00000+((k+1000)<<20), 0); - c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + xx = x*x; + c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5)))); + x = 1 + (x*c/(2-c) - lo + hi); if (k == 0) - return 1.0 - ((x*c)/(c-2.0) - x); - y = 1.0-((lo-(x*c)/(2.0-c))-hi); - if (k < -1021) - return y*twopk*twom1000; - if (k == 1024) - return y*2.0*0x1p1023; - return y*twopk; + return x; + return scalbn(x, k); } diff --git a/src/math/exp10f.c b/src/math/exp10f.c index b697eb9c..5fd1af9c 100644 --- a/src/math/exp10f.c +++ b/src/math/exp10f.c @@ -5,7 +5,7 @@ float exp10f(float x) { static const float p10[] = { - 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, + 1e-7f, 1e-6f, 1e-5f, 1e-4f, 1e-3f, 1e-2f, 1e-1f, 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7 }; float n, y = modff(x, &n); diff --git a/src/math/exp2.c b/src/math/exp2.c index 08c21a66..8e252280 100644 --- a/src/math/exp2.c +++ b/src/math/exp2.c @@ -27,11 +27,9 @@ #include "libm.h" -#define TBLBITS 8 -#define TBLSIZE (1 << TBLBITS) +#define TBLSIZE 256 static const double -huge = 0x1p1000, redux = 0x1.8p52 / TBLSIZE, P1 = 0x1.62e42fefa39efp-1, P2 = 0x1.ebfbdff82c575p-3, @@ -39,8 +37,6 @@ P3 = 0x1.c6b08d704a0a6p-5, P4 = 0x1.3b2ab88f70400p-7, P5 = 0x1.5d88003875c74p-10; -static const volatile double twom1000 = 0x1p-1000; - static const double tbl[TBLSIZE * 2] = { /* exp2(z + eps) eps */ 0x1.6a09e667f3d5dp-1, 0x1.9880p-44, @@ -334,25 +330,28 @@ static const double tbl[TBLSIZE * 2] = { */ double exp2(double x) { - double r, t, twopk, twopkp1000, z; - uint32_t hx, ix, lx, i0; - int k; + double r, t, z; + uint32_t hx, ix, i0; + union {uint32_t u; int32_t i;} k; /* Filter out exceptional cases. */ GET_HIGH_WORD(hx, x); ix = hx & 0x7fffffff; if (ix >= 0x40900000) { /* |x| >= 1024 */ if (ix >= 0x7ff00000) { - GET_LOW_WORD(lx, x); - if (((ix & 0xfffff) | lx) != 0 || (hx & 0x80000000) == 0) - return x + x; /* x is NaN or +Inf */ - else - return 0.0; /* x is -Inf */ + GET_LOW_WORD(ix, x); + if (hx == 0xfff00000 && ix == 0) /* -inf */ + return 0; + return x; + } + if (x >= 1024) { + STRICT_ASSIGN(double, x, x * 0x1p1023); + return x; + } + if (x <= -1075) { + STRICT_ASSIGN(double, x, 0x1p-1000*0x1p-1000); + return x; } - if (x >= 0x1.0p10) - return huge * huge; /* overflow */ - if (x <= -0x1.0ccp10) - return twom1000 * twom1000; /* underflow */ } else if (ix < 0x3c900000) { /* |x| < 0x1p-54 */ return 1.0 + x; } @@ -361,24 +360,16 @@ double exp2(double x) STRICT_ASSIGN(double, t, x + redux); GET_LOW_WORD(i0, t); i0 += TBLSIZE / 2; - k = (i0 >> TBLBITS) << 20; - i0 = (i0 & (TBLSIZE - 1)) << 1; + k.u = i0 / TBLSIZE * TBLSIZE; + k.i /= TBLSIZE; + i0 %= TBLSIZE; t -= redux; z = x - t; /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */ - t = tbl[i0]; /* exp2t[i0] */ - z -= tbl[i0 + 1]; /* eps[i0] */ - if (k >= -1021 << 20) - INSERT_WORDS(twopk, 0x3ff00000 + k, 0); - else - INSERT_WORDS(twopkp1000, 0x3ff00000 + k + (1000 << 20), 0); + t = tbl[2*i0]; /* exp2t[i0] */ + z -= tbl[2*i0 + 1]; /* eps[i0] */ r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5)))); - /* Scale by 2**(k>>20). */ - if (k < -1021 << 20) - return r * twopkp1000 * twom1000; - if (k == 1024 << 20) - return r * 2.0 * 0x1p1023; - return r * twopk; + return scalbn(r, k.i); } diff --git a/src/math/exp2f.c b/src/math/exp2f.c index 55c22eac..279f32de 100644 --- a/src/math/exp2f.c +++ b/src/math/exp2f.c @@ -27,19 +27,15 @@ #include "libm.h" -#define TBLBITS 4 -#define TBLSIZE (1 << TBLBITS) +#define TBLSIZE 16 static const float -huge = 0x1p100f, redux = 0x1.8p23f / TBLSIZE, P1 = 0x1.62e430p-1f, P2 = 0x1.ebfbe0p-3f, P3 = 0x1.c6b348p-5f, P4 = 0x1.3b2c9cp-7f; -static const volatile float twom100 = 0x1p-100f; - static const double exp2ft[TBLSIZE] = { 0x1.6a09e667f3bcdp-1, 0x1.7a11473eb0187p-1, @@ -89,23 +85,25 @@ float exp2f(float x) { double tv, twopk, u, z; float t; - uint32_t hx, ix, i0; - int32_t k; + uint32_t hx, ix, i0, k; /* Filter out exceptional cases. */ GET_FLOAT_WORD(hx, x); ix = hx & 0x7fffffff; if (ix >= 0x43000000) { /* |x| >= 128 */ if (ix >= 0x7f800000) { - if ((ix & 0x7fffff) != 0 || (hx & 0x80000000) == 0) - return x + x; /* x is NaN or +Inf */ - else - return 0.0; /* x is -Inf */ + if (hx == 0xff800000) /* -inf */ + return 0; + return x; + } + if (x >= 128) { + STRICT_ASSIGN(float, x, x * 0x1p127); + return x; + } + if (x <= -150) { + STRICT_ASSIGN(float, x, 0x1p-100*0x1p-100); + return x; } - if (x >= 0x1.0p7f) - return huge * huge; /* overflow */ - if (x <= -0x1.2cp7f) - return twom100 * twom100; /* underflow */ } else if (ix <= 0x33000000) { /* |x| <= 0x1p-25 */ return 1.0f + x; } @@ -114,7 +112,7 @@ float exp2f(float x) STRICT_ASSIGN(float, t, x + redux); GET_FLOAT_WORD(i0, t); i0 += TBLSIZE / 2; - k = (i0 >> TBLBITS) << 20; + k = (i0 / TBLSIZE) << 20; i0 &= TBLSIZE - 1; t -= redux; z = x - t; diff --git a/src/math/exp2l.c b/src/math/exp2l.c index b587308f..145c20fe 100644 --- a/src/math/exp2l.c +++ b/src/math/exp2l.c @@ -30,7 +30,7 @@ #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 long double exp2l(long double x) { - return exp2l(x); + return exp2(x); } #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 @@ -40,10 +40,6 @@ long double exp2l(long double x) #define BIAS (LDBL_MAX_EXP - 1) #define EXPMASK (BIAS + LDBL_MAX_EXP) -static const long double huge = 0x1p10000L; -/* XXX Prevent gcc from erroneously constant folding this. */ -static const volatile long double twom10000 = 0x1p-10000L; - static const double redux = 0x1.8p63 / TBLSIZE, P1 = 0x1.62e42fefa39efp-1, @@ -208,27 +204,28 @@ static const double tbl[TBLSIZE * 2] = { long double exp2l(long double x) { union IEEEl2bits u, v; - long double r, twopk, twopkp10000, z; + long double r, z; uint32_t hx, ix, i0; - int k; + union {uint32_t u; int32_t i;} k; /* Filter out exceptional cases. */ u.e = x; hx = u.xbits.expsign; ix = hx & EXPMASK; if (ix >= BIAS + 14) { /* |x| >= 16384 or x is NaN */ - if (ix == BIAS + LDBL_MAX_EXP) { - if (u.xbits.man != 1ULL << 63 || (hx & 0x8000) == 0) - return x + x; /* x is +Inf or NaN */ - return 0.0; /* x is -Inf */ + if (ix == EXPMASK) { + if (u.xbits.man == 1ULL << 63 && hx == 0xffff) /* -inf */ + return 0; + return x; + } + if (x >= 16384) { + x *= 0x1p16383L; + return x; } - if (x >= 16384) - return huge * huge; /* overflow */ if (x <= -16446) - return twom10000 * twom10000; /* underflow */ - } else if (ix <= BIAS - 66) { /* |x| < 0x1p-66 */ - return 1.0 + x; - } + return 0x1p-10000L*0x1p-10000L; + } else if (ix < BIAS - 64) /* |x| < 0x1p-64 */ + return 1 + x; /* * Reduce x, computing z, i0, and k. The low bits of x + redux @@ -240,38 +237,22 @@ long double exp2l(long double x) * Then the low-order word of x + redux is 0x000abc12, * We split this into k = 0xabc and i0 = 0x12 (adjusted to * index into the table), then we compute z = 0x0.003456p0. - * - * XXX If the exponent is negative, the computation of k depends on - * '>>' doing sign extension. */ u.e = x + redux; i0 = u.bits.manl + TBLSIZE / 2; - k = (int)i0 >> TBLBITS; - i0 = (i0 & (TBLSIZE - 1)) << 1; + k.u = i0 / TBLSIZE * TBLSIZE; + k.i /= TBLSIZE; + i0 %= TBLSIZE; u.e -= redux; z = x - u.e; - v.xbits.man = 1ULL << 63; - if (k >= LDBL_MIN_EXP) { - v.xbits.expsign = LDBL_MAX_EXP - 1 + k; - twopk = v.e; - } else { - v.xbits.expsign = LDBL_MAX_EXP - 1 + k + 10000; - twopkp10000 = v.e; - } /* Compute r = exp2l(y) = exp2lt[i0] * p(z). */ - long double t_hi = tbl[i0]; - long double t_lo = tbl[i0 + 1]; + long double t_hi = tbl[2*i0]; + long double t_lo = tbl[2*i0 + 1]; /* XXX This gives > 1 ulp errors outside of FE_TONEAREST mode */ r = t_lo + (t_hi + t_lo) * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * P6))))) + t_hi; - /* Scale by 2**k. */ - if (k >= LDBL_MIN_EXP) { - if (k == LDBL_MAX_EXP) - return r * 2.0 * 0x1p16383L; - return r * twopk; - } - return r * twopkp10000 * twom10000; + return scalbnl(r, k.i); } #endif diff --git a/src/math/expf.c b/src/math/expf.c index 3c3e2ab9..8aefc917 100644 --- a/src/math/expf.c +++ b/src/math/expf.c @@ -16,79 +16,69 @@ #include "libm.h" static const float -halF[2] = {0.5,-0.5,}, -huge = 1.0e+30, -o_threshold = 8.8721679688e+01, /* 0x42b17180 */ -u_threshold = -1.0397208405e+02, /* 0xc2cff1b5 */ -ln2HI[2] = { 6.9314575195e-01, /* 0x3f317200 */ - -6.9314575195e-01,},/* 0xbf317200 */ -ln2LO[2] = { 1.4286067653e-06, /* 0x35bfbe8e */ - -1.4286067653e-06,},/* 0xb5bfbe8e */ -invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */ +half[2] = {0.5,-0.5}, +ln2hi = 6.9314575195e-1f, /* 0x3f317200 */ +ln2lo = 1.4286067653e-6f, /* 0x35bfbe8e */ +invln2 = 1.4426950216e+0f, /* 0x3fb8aa3b */ /* * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]: * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74 */ -P1 = 1.6666625440e-1, /* 0xaaaa8f.0p-26 */ -P2 = -2.7667332906e-3; /* -0xb55215.0p-32 */ - -static const volatile float twom100 = 7.8886090522e-31; /* 2**-100=0x0d800000 */ +P1 = 1.6666625440e-1f, /* 0xaaaa8f.0p-26 */ +P2 = -2.7667332906e-3f; /* -0xb55215.0p-32 */ float expf(float x) { - float y,hi=0.0,lo=0.0,c,t,twopk; - int32_t k=0,xsb; + float hi, lo, c, xx; + int k, sign; uint32_t hx; GET_FLOAT_WORD(hx, x); - xsb = (hx>>31)&1; /* sign bit of x */ + sign = hx >> 31; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ - /* filter out non-finite argument */ - if (hx >= 0x42b17218) { /* if |x|>=88.721... */ + /* special cases */ + if (hx >= 0x42b17218) { /* if |x| >= 88.722839f or NaN */ if (hx > 0x7f800000) /* NaN */ - return x+x; - if (hx == 0x7f800000) /* exp(+-inf)={inf,0} */ - return xsb==0 ? x : 0.0; - if (x > o_threshold) - return huge*huge; /* overflow */ - if (x < u_threshold) - return twom100*twom100; /* underflow */ + return x; + if (!sign) { + /* overflow if x!=inf */ + STRICT_ASSIGN(float, x, x * 0x1p127f); + return x; + } + if (hx == 0x7f800000) /* -inf */ + return 0; + if (hx >= 0x42cff1b5) { /* x <= -103.972084f */ + /* underflow */ + STRICT_ASSIGN(float, x, 0x1p-100f*0x1p-100f); + return x; + } } /* argument reduction */ - if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ - if (hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ - hi = x-ln2HI[xsb]; - lo = ln2LO[xsb]; - k = 1 - xsb - xsb; - } else { - k = invln2*x + halF[xsb]; - t = k; - hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ - lo = t*ln2LO[0]; - } + if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ + if (hx > 0x3f851592) /* if |x| > 1.5 ln2 */ + k = invln2*x + half[sign]; + else + k = 1 - sign - sign; + hi = x - k*ln2hi; /* k*ln2hi is exact here */ + lo = k*ln2lo; STRICT_ASSIGN(float, x, hi - lo); - } else if(hx < 0x39000000) { /* |x|<2**-14 */ - /* raise inexact */ - if (huge+x > 1.0f) - return 1.0f + x; - } else + } else if (hx > 0x39000000) { /* |x| > 2**-14 */ k = 0; + hi = x; + lo = 0; + } else { + /* raise inexact */ + FORCE_EVAL(0x1p127f + x); + return 1 + x; + } /* x is now in primary range */ - t = x*x; - if (k >= -125) - SET_FLOAT_WORD(twopk, 0x3f800000+(k<<23)); - else - SET_FLOAT_WORD(twopk, 0x3f800000+((k+100)<<23)); - c = x - t*(P1+t*P2); + xx = x*x; + c = x - xx*(P1+xx*P2); + x = 1 + (x*c/(2-c) - lo + hi); if (k == 0) - return 1.0f - ((x*c)/(c - 2.0f) - x); - y = 1.0f - ((lo - (x*c)/(2.0f - c)) - hi); - if (k < -125) - return y*twopk*twom100; - if (k == 128) - return y*2.0f*0x1p127f; - return y*twopk; + return x; + return scalbnf(x, k); } diff --git a/src/math/expl.c b/src/math/expl.c index b289ffec..50a04297 100644 --- a/src/math/expl.c +++ b/src/math/expl.c @@ -35,7 +35,7 @@ * x k f * e = 2 e. * - * A Pade' form of degree 2/3 is used to approximate exp(f) - 1 + * A Pade' form of degree 5/6 is used to approximate exp(f) - 1 * in the basic range [-0.5 ln 2, 0.5 ln 2]. * * @@ -86,42 +86,37 @@ static const long double Q[4] = { 2.0000000000000000000897E0L, }; static const long double -C1 = 6.9314575195312500000000E-1L, -C2 = 1.4286068203094172321215E-6L, -MAXLOGL = 1.1356523406294143949492E4L, -MINLOGL = -1.13994985314888605586758E4L, -LOG2EL = 1.4426950408889634073599E0L; +LN2HI = 6.9314575195312500000000E-1L, +LN2LO = 1.4286068203094172321215E-6L, +LOG2E = 1.4426950408889634073599E0L; long double expl(long double x) { long double px, xx; - int n; + int k; if (isnan(x)) return x; - if (x > MAXLOGL) - return INFINITY; - if (x < MINLOGL) - return 0.0; + if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */ + return x * 0x1p16383L; + if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */ + return 0x1p-10000L * 0x1p-10000L; - /* Express e**x = e**g 2**n - * = e**g e**(n loge(2)) - * = e**(g + n loge(2)) + /* Express e**x = e**f 2**k + * = e**(f + k ln(2)) */ - px = floorl(LOG2EL * x + 0.5); /* floor() truncates toward -infinity. */ - n = px; - x -= px * C1; - x -= px * C2; + px = floorl(LOG2E * x + 0.5); + k = px; + x -= px * LN2HI; + x -= px * LN2LO; - /* rational approximation for exponential - * of the fractional part: - * e**x = 1 + 2x P(x**2)/(Q(x**2) - P(x**2)) + /* rational approximation of the fractional part: + * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2)) */ xx = x * x; px = x * __polevll(xx, P, 2); - x = px/(__polevll(xx, Q, 3) - px); + x = px/(__polevll(xx, Q, 3) - px); x = 1.0 + 2.0 * x; - x = scalbnl(x, n); - return x; + return scalbnl(x, k); } #endif |