diff options
author | Szabolcs Nagy <nsz@port70.net> | 2013-10-28 01:16:14 +0000 |
---|---|---|
committer | Szabolcs Nagy <nsz@port70.net> | 2013-10-28 01:16:14 +0000 |
commit | 71d23b310383699a3101ea8bf088398796529ddd (patch) | |
tree | 812e6281a32bdc70977475abef9ee6b52b187422 /src | |
parent | 4b15d9f46a2b260661d2e054575e617c76795578 (diff) | |
download | musl-71d23b310383699a3101ea8bf088398796529ddd.tar.gz musl-71d23b310383699a3101ea8bf088398796529ddd.tar.bz2 musl-71d23b310383699a3101ea8bf088398796529ddd.tar.xz musl-71d23b310383699a3101ea8bf088398796529ddd.zip |
math: extensive log*.c cleanup
The log, log2 and log10 functions share a lot of code and to a lesser
extent log1p too. A small part of the code was kept separately in
__log1p.h, but since it did not capture much of the common code and
it was inlined anyway, it did not solve the issue properly. Now the
log functions have significant code duplication, which may be resolved
later, until then they need to be modified together.
logl, log10l, log2l, log1pl:
* Fix the sign when the return value should be -inf.
* Remove the volatile hack from log10l (seems unnecessary)
log1p, log1pf:
* Change the handling of small inputs: only |x|<2^-53 is special
(then it is enough to return x with the usual subnormal handling)
this fixes the sign of log1p(0) in downward rounding.
* Do not handle the k==0 case specially (other than skipping the
elaborate argument reduction)
* Do not handle 1+x close to power-of-two specially (this code was
used rarely, did not give much speed up and the precision wasn't
better than the general)
* Fix the correction term formula (c=1-(u-x) was used incorrectly
when x<1 but (double)(x+1)==2, this was not a critical issue)
* Use the exact same method for calculating log(1+f) as in log
(except in log1p the c correction term is added to the result).
log, logf, log10, log10f, log2, log2f:
* Use double_t and float_t consistently.
* Now the first part of log10 and log2 is identical to log (until the
return statement, hopefully this makes maintainence easier).
* Most special case formulas were removed (close to power-of-two and
k==0 cases), they increase the code size without providing precision
or performance benefits (and obfuscate the code).
Only x==1 is handled specially so in downward rounding mode the
sign of zero is correct (the general formula happens to give -0).
* For x==0 instead of -1/0.0 or -two54/0.0, return -1/(x*x) to force
raising the exception at runtime.
* Arg reduction code is changed (slightly simplified)
* The thresholds for arg reduction to [sqrt(2)/2,sqrt(2)] are now
consistently the [0x3fe6a09e00000000,0x3ff6a09dffffffff] and the
[0x3f3504f3,0x3fb504f2] intervals for double and float reductions
respectively (the exact threshold values are not critical)
* Remove the obsolete comment for the FLT_EVAL_METHOD!=0 case in log2f
(The same code is used for all eval methods now, on i386 slightly
simpler code could be used, but we have asm there anyway)
all:
* Fix signed int arithmetics (using unsigned for bitmanipulation)
* Fix various comments
Diffstat (limited to 'src')
-rw-r--r-- | src/math/__log1p.h | 94 | ||||
-rw-r--r-- | src/math/__log1pf.h | 35 | ||||
-rw-r--r-- | src/math/log.c | 84 | ||||
-rw-r--r-- | src/math/log10.c | 99 | ||||
-rw-r--r-- | src/math/log10f.c | 84 | ||||
-rw-r--r-- | src/math/log10l.c | 7 | ||||
-rw-r--r-- | src/math/log1p.c | 148 | ||||
-rw-r--r-- | src/math/log1pf.c | 125 | ||||
-rw-r--r-- | src/math/log1pl.c | 2 | ||||
-rw-r--r-- | src/math/log2.c | 91 | ||||
-rw-r--r-- | src/math/log2f.c | 95 | ||||
-rw-r--r-- | src/math/log2l.c | 2 | ||||
-rw-r--r-- | src/math/logf.c | 78 | ||||
-rw-r--r-- | src/math/logl.c | 8 |
14 files changed, 369 insertions, 583 deletions
diff --git a/src/math/__log1p.h b/src/math/__log1p.h deleted file mode 100644 index 57187115..00000000 --- a/src/math/__log1p.h +++ /dev/null @@ -1,94 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/k_log.h */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * __log1p(f): - * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)]. - * - * The following describes the overall strategy for computing - * logarithms in base e. The argument reduction and adding the final - * term of the polynomial are done by the caller for increased accuracy - * when different bases are used. - * - * Method : - * 1. Argument Reduction: find k and f such that - * x = 2^k * (1+f), - * where sqrt(2)/2 < 1+f < sqrt(2) . - * - * 2. Approximation of log(1+f). - * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) - * = 2s + 2/3 s**3 + 2/5 s**5 + ....., - * = 2s + s*R - * We use a special Reme algorithm on [0,0.1716] to generate - * a polynomial of degree 14 to approximate R The maximum error - * of this polynomial approximation is bounded by 2**-58.45. In - * other words, - * 2 4 6 8 10 12 14 - * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s - * (the values of Lg1 to Lg7 are listed in the program) - * and - * | 2 14 | -58.45 - * | Lg1*s +...+Lg7*s - R(z) | <= 2 - * | | - * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. - * In order to guarantee error in log below 1ulp, we compute log - * by - * log(1+f) = f - s*(f - R) (if f is not too large) - * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) - * - * 3. Finally, log(x) = k*ln2 + log(1+f). - * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) - * Here ln2 is split into two floating point number: - * ln2_hi + ln2_lo, - * where n*ln2_hi is always exact for |n| < 2000. - * - * Special cases: - * log(x) is NaN with signal if x < 0 (including -INF) ; - * log(+INF) is +INF; log(0) is -INF with signal; - * log(NaN) is that NaN with no signal. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -static const double -Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ -Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ -Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ -Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ -Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ -Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ -Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ - -/* - * We always inline __log1p(), since doing so produces a - * substantial performance improvement (~40% on amd64). - */ -static inline double __log1p(double f) -{ - double_t hfsq,s,z,R,w,t1,t2; - - s = f/(2.0+f); - z = s*s; - w = z*z; - t1= w*(Lg2+w*(Lg4+w*Lg6)); - t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); - R = t2+t1; - hfsq = 0.5*f*f; - return s*(hfsq+R); -} diff --git a/src/math/__log1pf.h b/src/math/__log1pf.h deleted file mode 100644 index f2fbef29..00000000 --- a/src/math/__log1pf.h +++ /dev/null @@ -1,35 +0,0 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/k_logf.h */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * See comments in __log1p.h. - */ - -/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ -static const float -Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */ -Lg2 = 0xccce13.0p-25, /* 0.40000972152 */ -Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */ -Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */ - -static inline float __log1pf(float f) -{ - float_t hfsq,s,z,R,w,t1,t2; - - s = f/(2.0f + f); - z = s*s; - w = z*z; - t1 = w*(Lg2+w*Lg4); - t2 = z*(Lg1+w*Lg3); - R = t2+t1; - hfsq = 0.5f * f * f; - return s*(hfsq+R); -} diff --git a/src/math/log.c b/src/math/log.c index 98051205..e61e113d 100644 --- a/src/math/log.c +++ b/src/math/log.c @@ -10,7 +10,7 @@ * ==================================================== */ /* log(x) - * Return the logrithm of x + * Return the logarithm of x * * Method : * 1. Argument Reduction: find k and f such that @@ -60,12 +60,12 @@ * to produce the hexadecimal values shown. */ -#include "libm.h" +#include <math.h> +#include <stdint.h> static const double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ -two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ @@ -76,63 +76,43 @@ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ double log(double x) { - double hfsq,f,s,z,R,w,t1,t2,dk; - int32_t k,hx,i,j; - uint32_t lx; - - EXTRACT_WORDS(hx, lx, x); + union {double f; uint64_t i;} u = {x}; + double_t hfsq,f,s,z,R,w,t1,t2,dk; + uint32_t hx; + int k; + hx = u.i>>32; k = 0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (((hx&0x7fffffff)|lx) == 0) - return -two54/0.0; /* log(+-0)=-inf */ - if (hx < 0) - return (x-x)/0.0; /* log(-#) = NaN */ - /* subnormal number, scale up x */ + if (hx < 0x00100000 || hx>>31) { + if (u.i<<1 == 0) + return -1/(x*x); /* log(+-0)=-inf */ + if (hx>>31) + return (x-x)/0.0; /* log(-#) = NaN */ + /* subnormal number, scale x up */ k -= 54; - x *= two54; - GET_HIGH_WORD(hx,x); - } - if (hx >= 0x7ff00000) - return x+x; - k += (hx>>20) - 1023; - hx &= 0x000fffff; - i = (hx+0x95f64)&0x100000; - SET_HIGH_WORD(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */ - k += i>>20; + x *= 0x1p54; + u.f = x; + hx = u.i>>32; + } else if (hx >= 0x7ff00000) { + return x; + } else if (hx == 0x3ff00000 && u.i<<32 == 0) + return 0; + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + hx += 0x3ff00000 - 0x3fe6a09e; + k += (int)(hx>>20) - 0x3ff; + hx = (hx&0x000fffff) + 0x3fe6a09e; + u.i = (uint64_t)hx<<32 | (u.i&0xffffffff); + x = u.f; + f = x - 1.0; - if ((0x000fffff&(2+hx)) < 3) { /* -2**-20 <= f < 2**-20 */ - if (f == 0.0) { - if (k == 0) { - return 0.0; - } - dk = (double)k; - return dk*ln2_hi + dk*ln2_lo; - } - R = f*f*(0.5-0.33333333333333333*f); - if (k == 0) - return f - R; - dk = (double)k; - return dk*ln2_hi - ((R-dk*ln2_lo)-f); - } + hfsq = 0.5*f*f; s = f/(2.0+f); - dk = (double)k; z = s*s; - i = hx - 0x6147a; w = z*z; - j = 0x6b851 - hx; t1 = w*(Lg2+w*(Lg4+w*Lg6)); t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); - i |= j; R = t2 + t1; - if (i > 0) { - hfsq = 0.5*f*f; - if (k == 0) - return f - (hfsq-s*(hfsq+R)); - return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); - } else { - if (k == 0) - return f - s*(f-R); - return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f); - } + dk = k; + return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi; } diff --git a/src/math/log10.c b/src/math/log10.c index ed65d9be..81026876 100644 --- a/src/math/log10.c +++ b/src/math/log10.c @@ -10,72 +10,91 @@ * ==================================================== */ /* - * Return the base 10 logarithm of x. See e_log.c and k_log.h for most - * comments. + * Return the base 10 logarithm of x. See log.c for most comments. * - * log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2) - * in not-quite-routine extra precision. + * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 + * as in log.c, then combine and scale in extra precision: + * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2) */ -#include "libm.h" -#include "__log1p.h" +#include <math.h> +#include <stdint.h> static const double -two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */ ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */ log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ -log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ +log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */ +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ double log10(double x) { - double f,hfsq,hi,lo,r,val_hi,val_lo,w,y,y2; - int32_t i,k,hx; - uint32_t lx; - - EXTRACT_WORDS(hx, lx, x); + union {double f; uint64_t i;} u = {x}; + double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo; + uint32_t hx; + int k; + hx = u.i>>32; k = 0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (((hx&0x7fffffff)|lx) == 0) - return -two54/0.0; /* log(+-0)=-inf */ - if (hx<0) - return (x-x)/0.0; /* log(-#) = NaN */ - /* subnormal number, scale up x */ + if (hx < 0x00100000 || hx>>31) { + if (u.i<<1 == 0) + return -1/(x*x); /* log(+-0)=-inf */ + if (hx>>31) + return (x-x)/0.0; /* log(-#) = NaN */ + /* subnormal number, scale x up */ k -= 54; - x *= two54; - GET_HIGH_WORD(hx, x); - } - if (hx >= 0x7ff00000) - return x+x; - if (hx == 0x3ff00000 && lx == 0) - return 0.0; /* log(1) = +0 */ - k += (hx>>20) - 1023; - hx &= 0x000fffff; - i = (hx+0x95f64)&0x100000; - SET_HIGH_WORD(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */ - k += i>>20; - y = (double)k; + x *= 0x1p54; + u.f = x; + hx = u.i>>32; + } else if (hx >= 0x7ff00000) { + return x; + } else if (hx == 0x3ff00000 && u.i<<32 == 0) + return 0; + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + hx += 0x3ff00000 - 0x3fe6a09e; + k += (int)(hx>>20) - 0x3ff; + hx = (hx&0x000fffff) + 0x3fe6a09e; + u.i = (uint64_t)hx<<32 | (u.i&0xffffffff); + x = u.f; + f = x - 1.0; hfsq = 0.5*f*f; - r = __log1p(f); + s = f/(2.0+f); + z = s*s; + w = z*z; + t1 = w*(Lg2+w*(Lg4+w*Lg6)); + t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + R = t2 + t1; /* See log2.c for details. */ + /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ hi = f - hfsq; - SET_LOW_WORD(hi, 0); - lo = (f - hi) - hfsq + r; + u.f = hi; + u.i &= (uint64_t)-1<<32; + hi = u.f; + lo = f - hi - hfsq + s*(hfsq+R); + + /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */ val_hi = hi*ivln10hi; - y2 = y*log10_2hi; - val_lo = y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi; + dk = k; + y = dk*log10_2hi; + val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi; /* - * Extra precision in for adding y*log10_2hi is not strictly needed + * Extra precision in for adding y is not strictly needed * since there is no very large cancellation near x = sqrt(2) or * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs * with some parallelism and it reduces the error for many args. */ - w = y2 + val_hi; - val_lo += (y2 - w) + val_hi; + w = y + val_hi; + val_lo += (y - w) + val_hi; val_hi = w; return val_lo + val_hi; diff --git a/src/math/log10f.c b/src/math/log10f.c index e10749b5..9ca2f017 100644 --- a/src/math/log10f.c +++ b/src/math/log10f.c @@ -13,57 +13,65 @@ * See comments in log10.c. */ -#include "libm.h" -#include "__log1pf.h" +#include <math.h> +#include <stdint.h> static const float -two25 = 3.3554432000e+07, /* 0x4c000000 */ ivln10hi = 4.3432617188e-01, /* 0x3ede6000 */ ivln10lo = -3.1689971365e-05, /* 0xb804ead9 */ log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */ -log10_2lo = 7.9034151668e-07; /* 0x355427db */ +log10_2lo = 7.9034151668e-07, /* 0x355427db */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */ +Lg2 = 0xccce13.0p-25, /* 0.40000972152 */ +Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */ +Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */ float log10f(float x) { - float f,hfsq,hi,lo,r,y; - int32_t i,k,hx; - - GET_FLOAT_WORD(hx, x); + union {float f; uint32_t i;} u = {x}; + float_t hfsq,f,s,z,R,w,t1,t2,dk,hi,lo; + uint32_t ix; + int k; + ix = u.i; k = 0; - if (hx < 0x00800000) { /* x < 2**-126 */ - if ((hx&0x7fffffff) == 0) - return -two25/0.0f; /* log(+-0)=-inf */ - if (hx < 0) - return (x-x)/0.0f; /* log(-#) = NaN */ + if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */ + if (ix<<1 == 0) + return -1/(x*x); /* log(+-0)=-inf */ + if (ix>>31) + return (x-x)/0.0f; /* log(-#) = NaN */ /* subnormal number, scale up x */ k -= 25; - x *= two25; - GET_FLOAT_WORD(hx, x); - } - if (hx >= 0x7f800000) - return x+x; - if (hx == 0x3f800000) - return 0.0f; /* log(1) = +0 */ - k += (hx>>23) - 127; - hx &= 0x007fffff; - i = (hx+(0x4afb0d))&0x800000; - SET_FLOAT_WORD(x, hx|(i^0x3f800000)); /* normalize x or x/2 */ - k += i>>23; - y = (float)k; + x *= 0x1p25f; + u.f = x; + ix = u.i; + } else if (ix >= 0x7f800000) { + return x; + } else if (ix == 0x3f800000) + return 0; + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + ix += 0x3f800000 - 0x3f3504f3; + k += (int)(ix>>23) - 0x7f; + ix = (ix&0x007fffff) + 0x3f3504f3; + u.i = ix; + x = u.f; + f = x - 1.0f; - hfsq = 0.5f * f * f; - r = __log1pf(f); + s = f/(2.0f + f); + z = s*s; + w = z*z; + t1= w*(Lg2+w*Lg4); + t2= z*(Lg1+w*Lg3); + R = t2 + t1; + hfsq = 0.5f*f*f; -// FIXME -// /* See log2f.c and log2.c for details. */ -// if (sizeof(float_t) > sizeof(float)) -// return (r - hfsq + f) * ((float_t)ivln10lo + ivln10hi) + -// y * ((float_t)log10_2lo + log10_2hi); hi = f - hfsq; - GET_FLOAT_WORD(hx, hi); - SET_FLOAT_WORD(hi, hx&0xfffff000); - lo = (f - hi) - hfsq + r; - return y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + - hi*ivln10hi + y*log10_2hi; + u.f = hi; + u.i &= 0xfffff000; + hi = u.f; + lo = f - hi - hfsq + s*(hfsq+R); + dk = k; + return dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + hi*ivln10hi + dk*log10_2hi; } diff --git a/src/math/log10l.c b/src/math/log10l.c index f0eeeafb..c7aacf90 100644 --- a/src/math/log10l.c +++ b/src/math/log10l.c @@ -117,16 +117,15 @@ static const long double S[4] = { long double log10l(long double x) { - long double y; - volatile long double z; + long double y, z; int e; if (isnan(x)) return x; if(x <= 0.0) { if(x == 0.0) - return -1.0 / (x - x); - return (x - x) / (x - x); + return -1.0 / (x*x); + return (x - x) / 0.0; } if (x == INFINITY) return INFINITY; diff --git a/src/math/log1p.c b/src/math/log1p.c index a71ac423..00971349 100644 --- a/src/math/log1p.c +++ b/src/math/log1p.c @@ -10,6 +10,7 @@ * ==================================================== */ /* double log1p(double x) + * Return the natural logarithm of 1+x. * * Method : * 1. Argument Reduction: find k and f such that @@ -23,31 +24,9 @@ * and add back the correction term c/u. * (Note: when x > 2**53, one can simply return log(x)) * - * 2. Approximation of log1p(f). - * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) - * = 2s + 2/3 s**3 + 2/5 s**5 + ....., - * = 2s + s*R - * We use a special Reme algorithm on [0,0.1716] to generate - * a polynomial of degree 14 to approximate R The maximum error - * of this polynomial approximation is bounded by 2**-58.45. In - * other words, - * 2 4 6 8 10 12 14 - * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s - * (the values of Lp1 to Lp7 are listed in the program) - * and - * | 2 14 | -58.45 - * | Lp1*s +...+Lp7*s - R(z) | <= 2 - * | | - * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. - * In order to guarantee error in log below 1ulp, we compute log - * by - * log1p(f) = f - (hfsq - s*(hfsq+R)). + * 2. Approximation of log(1+f): See log.c * - * 3. Finally, log1p(x) = k*ln2 + log1p(f). - * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) - * Here ln2 is split into two floating point number: - * ln2_hi + ln2_lo, - * where n*ln2_hi is always exact for |n| < 2000. + * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c * * Special cases: * log1p(x) is NaN with signal if x < -1 (including -INF) ; @@ -79,94 +58,65 @@ static const double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ -two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ -Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ -Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ -Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ -Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ -Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ -Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ -Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ double log1p(double x) { - double hfsq,f,c,s,z,R,u; - int32_t k,hx,hu,ax; - - GET_HIGH_WORD(hx, x); - ax = hx & 0x7fffffff; + union {double f; uint64_t i;} u = {x}; + double_t hfsq,f,c,s,z,R,w,t1,t2,dk; + uint32_t hx,hu; + int k; + hx = u.i>>32; k = 1; - if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */ - if (ax >= 0x3ff00000) { /* x <= -1.0 */ - if (x == -1.0) - return -two54/0.0; /* log1p(-1)=+inf */ - return (x-x)/(x-x); /* log1p(x<-1)=NaN */ + if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */ + if (hx >= 0xbff00000) { /* x <= -1.0 */ + if (x == -1) + return x/0.0; /* log1p(-1) = -inf */ + return (x-x)/0.0; /* log1p(x<-1) = NaN */ } - if (ax < 0x3e200000) { /* |x| < 2**-29 */ - /* if 0x1p-1022 <= |x| < 0x1p-54, avoid raising underflow */ - if (ax < 0x3c900000 && ax >= 0x00100000) - return x; -#if FLT_EVAL_METHOD != 0 - FORCE_EVAL((float)x); -#endif - return x - x*x*0.5; + if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */ + /* underflow if subnormal */ + if ((hx&0x7ff00000) == 0) + FORCE_EVAL((float)x); + return x; } - if (hx > 0 || hx <= (int32_t)0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ + if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ k = 0; + c = 0; f = x; - hu = 1; } - } - if (hx >= 0x7ff00000) - return x+x; - if (k != 0) { - if (hx < 0x43400000) { - u = 1 + x; - GET_HIGH_WORD(hu, u); - k = (hu>>20) - 1023; - c = k > 0 ? 1.0-(u-x) : x-(u-1.0); /* correction term */ - c /= u; - } else { - u = x; - GET_HIGH_WORD(hu,u); - k = (hu>>20) - 1023; + } else if (hx >= 0x7ff00000) + return x; + if (k) { + u.f = 1 + x; + hu = u.i>>32; + hu += 0x3ff00000 - 0x3fe6a09e; + k = (int)(hu>>20) - 0x3ff; + /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ + if (k < 54) { + c = k >= 2 ? 1-(u.f-x) : x-(u.f-1); + c /= u.f; + } else c = 0; - } - hu &= 0x000fffff; - /* - * The approximation to sqrt(2) used in thresholds is not - * critical. However, the ones used above must give less - * strict bounds than the one here so that the k==0 case is - * never reached from here, since here we have committed to - * using the correction term but don't use it if k==0. - */ - if (hu < 0x6a09e) { /* u ~< sqrt(2) */ - SET_HIGH_WORD(u, hu|0x3ff00000); /* normalize u */ - } else { - k += 1; - SET_HIGH_WORD(u, hu|0x3fe00000); /* normalize u/2 */ - hu = (0x00100000-hu)>>2; - } - f = u - 1.0; + /* reduce u into [sqrt(2)/2, sqrt(2)] */ + hu = (hu&0x000fffff) + 0x3fe6a09e; + u.i = (uint64_t)hu<<32 | (u.i&0xffffffff); + f = u.f - 1; } hfsq = 0.5*f*f; - if (hu == 0) { /* |f| < 2**-20 */ - if (f == 0.0) { - if(k == 0) - return 0.0; - c += k*ln2_lo; - return k*ln2_hi + c; - } - R = hfsq*(1.0 - 0.66666666666666666*f); - if (k == 0) - return f - R; - return k*ln2_hi - ((R-(k*ln2_lo+c))-f); - } s = f/(2.0+f); z = s*s; - R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); - if (k == 0) - return f - (hfsq-s*(hfsq+R)); - return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); + w = z*z; + t1 = w*(Lg2+w*(Lg4+w*Lg6)); + t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + R = t2 + t1; + dk = k; + return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi; } diff --git a/src/math/log1pf.c b/src/math/log1pf.c index e6940d29..23985c35 100644 --- a/src/math/log1pf.c +++ b/src/math/log1pf.c @@ -1,8 +1,5 @@ /* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */ /* - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ -/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * @@ -18,95 +15,63 @@ static const float ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ -two25 = 3.355443200e+07, /* 0x4c000000 */ -Lp1 = 6.6666668653e-01, /* 3F2AAAAB */ -Lp2 = 4.0000000596e-01, /* 3ECCCCCD */ -Lp3 = 2.8571429849e-01, /* 3E924925 */ -Lp4 = 2.2222198546e-01, /* 3E638E29 */ -Lp5 = 1.8183572590e-01, /* 3E3A3325 */ -Lp6 = 1.5313838422e-01, /* 3E1CD04F */ -Lp7 = 1.4798198640e-01; /* 3E178897 */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */ +Lg2 = 0xccce13.0p-25, /* 0.40000972152 */ +Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */ +Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */ float log1pf(float x) { - float hfsq,f,c,s,z,R,u; - int32_t k,hx,hu,ax; - - GET_FLOAT_WORD(hx, x); - ax = hx & 0x7fffffff; + union {float f; uint32_t i;} u = {x}; + float_t hfsq,f,c,s,z,R,w,t1,t2,dk; + uint32_t ix,iu; + int k; + ix = u.i; k = 1; - if (hx < 0x3ed413d0) { /* 1+x < sqrt(2)+ */ - if (ax >= 0x3f800000) { /* x <= -1.0 */ - if (x == -1.0f) - return -two25/0.0f; /* log1p(-1)=+inf */ - return (x-x)/(x-x); /* log1p(x<-1)=NaN */ + if (ix < 0x3ed413d0 || ix>>31) { /* 1+x < sqrt(2)+ */ + if (ix >= 0xbf800000) { /* x <= -1.0 */ + if (x == -1) + return x/0.0f; /* log1p(-1)=+inf */ + return (x-x)/0.0f; /* log1p(x<-1)=NaN */ } - if (ax < 0x38000000) { /* |x| < 2**-15 */ - /* if 0x1p-126 <= |x| < 0x1p-24, avoid raising underflow */ - if (ax < 0x33800000 && ax >= 0x00800000) - return x; -#if FLT_EVAL_METHOD != 0 - FORCE_EVAL(x*x); -#endif - return x - x*x*0.5f; + if (ix<<1 < 0x33800000<<1) { /* |x| < 2**-24 */ + /* underflow if subnormal */ + if ((ix&0x7f800000) == 0) + FORCE_EVAL(x*x); + return x; } - if (hx > 0 || hx <= (int32_t)0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ + if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ k = 0; + c = 0; f = x; - hu = 1; } - } - if (hx >= 0x7f800000) - return x+x; - if (k != 0) { - if (hx < 0x5a000000) { - u = 1 + x; - GET_FLOAT_WORD(hu, u); - k = (hu>>23) - 127; - /* correction term */ - c = k > 0 ? 1.0f-(u-x) : x-(u-1.0f); - c /= u; - } else { - u = x; - GET_FLOAT_WORD(hu,u); - k = (hu>>23) - 127; + } else if (ix >= 0x7f800000) + return x; + if (k) { + u.f = 1 + x; + iu = u.i; + iu += 0x3f800000 - 0x3f3504f3; + k = (int)(iu>>23) - 0x7f; + /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ + if (k < 25) { + c = k >= 2 ? 1-(u.f-x) : x-(u.f-1); + c /= u.f; + } else c = 0; - } - hu &= 0x007fffff; - /* - * The approximation to sqrt(2) used in thresholds is not - * critical. However, the ones used above must give less - * strict bounds than the one here so that the k==0 case is - * never reached from here, since here we have committed to - * using the correction term but don't use it if k==0. - */ - if (hu < 0x3504f4) { /* u < sqrt(2) */ - SET_FLOAT_WORD(u, hu|0x3f800000); /* normalize u */ - } else { - k += 1; - SET_FLOAT_WORD(u, hu|0x3f000000); /* normalize u/2 */ - hu = (0x00800000-hu)>>2; - } - f = u - 1.0f; - } - hfsq = 0.5f * f * f; - if (hu == 0) { /* |f| < 2**-20 */ - if (f == 0.0f) { - if (k == 0) - return 0.0f; - c += k*ln2_lo; - return k*ln2_hi+c; - } - R = hfsq*(1.0f - 0.66666666666666666f * f); - if (k == 0) - return f - R; - return k*ln2_hi - ((R-(k*ln2_lo+c))-f); + /* reduce u into [sqrt(2)/2, sqrt(2)] */ + iu = (iu&0x007fffff) + 0x3f3504f3; + u.i = iu; + f = u.f - 1; } s = f/(2.0f + f); z = s*s; - R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); - if (k == 0) - return f - (hfsq-s*(hfsq+R)); - return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); + w = z*z; + t1= w*(Lg2+w*Lg4); + t2= z*(Lg1+w*Lg3); + R = t2 + t1; + hfsq = 0.5f*f*f; + dk = k; + return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi; } diff --git a/src/math/log1pl.c b/src/math/log1pl.c index edb48df1..37da46d2 100644 --- a/src/math/log1pl.c +++ b/src/math/log1pl.c @@ -118,7 +118,7 @@ long double log1pl(long double xm1) /* Test for domain errors. */ if (x <= 0.0) { if (x == 0.0) - return -1/x; /* -inf with divbyzero */ + return -1/(x*x); /* -inf with divbyzero */ return 0/0.0f; /* nan with invalid */ } diff --git a/src/math/log2.c b/src/math/log2.c index 1974215d..0aafad4b 100644 --- a/src/math/log2.c +++ b/src/math/log2.c @@ -10,55 +10,66 @@ * ==================================================== */ /* - * Return the base 2 logarithm of x. See log.c and __log1p.h for most - * comments. + * Return the base 2 logarithm of x. See log.c for most comments. * - * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel, - * then does the combining and scaling steps - * log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k - * in not-quite-routine extra precision. + * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 + * as in log.c, then combine and scale in extra precision: + * log2(x) = (f - f*f/2 + r)/log(2) + k */ -#include "libm.h" -#include "__log1p.h" +#include <math.h> +#include <stdint.h> static const double -two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */ -ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */ +ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */ +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ double log2(double x) { - double f,hfsq,hi,lo,r,val_hi,val_lo,w,y; - int32_t i,k,hx; - uint32_t lx; - - EXTRACT_WORDS(hx, lx, x); + union {double f; uint64_t i;} u = {x}; + double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo; + uint32_t hx; + int k; + hx = u.i>>32; k = 0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (((hx&0x7fffffff)|lx) == 0) - return -two54/0.0; /* log(+-0)=-inf */ - if (hx < 0) - return (x-x)/0.0; /* log(-#) = NaN */ - /* subnormal number, scale up x */ + if (hx < 0x00100000 || hx>>31) { + if (u.i<<1 == 0) + return -1/(x*x); /* log(+-0)=-inf */ + if (hx>>31) + return (x-x)/0.0; /* log(-#) = NaN */ + /* subnormal number, scale x up */ k -= 54; - x *= two54; - GET_HIGH_WORD(hx, x); - } - if (hx >= 0x7ff00000) - return x+x; - if (hx == 0x3ff00000 && lx == 0) - return 0.0; /* log(1) = +0 */ - k += (hx>>20) - 1023; - hx &= 0x000fffff; - i = (hx+0x95f64) & 0x100000; - SET_HIGH_WORD(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */ - k += i>>20; - y = (double)k; + x *= 0x1p54; + u.f = x; + hx = u.i>>32; + } else if (hx >= 0x7ff00000) { + return x; + } else if (hx == 0x3ff00000 && u.i<<32 == 0) + return 0; + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + hx += 0x3ff00000 - 0x3fe6a09e; + k += (int)(hx>>20) - 0x3ff; + hx = (hx&0x000fffff) + 0x3fe6a09e; + u.i = (uint64_t)hx<<32 | (u.i&0xffffffff); + x = u.f; + f = x - 1.0; hfsq = 0.5*f*f; - r = __log1p(f); + s = f/(2.0+f); + z = s*s; + w = z*z; + t1 = w*(Lg2+w*(Lg4+w*Lg6)); + t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + R = t2 + t1; /* * f-hfsq must (for args near 1) be evaluated in extra precision @@ -90,13 +101,19 @@ double log2(double x) * The multi-precision calculations for the multiplications are * routine. */ + + /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ hi = f - hfsq; - SET_LOW_WORD(hi, 0); - lo = (f - hi) - hfsq + r; + u.f = hi; + u.i &= (uint64_t)-1<<32; + hi = u.f; + lo = f - hi - hfsq + s*(hfsq+R); + val_hi = hi*ivln2hi; val_lo = (lo+hi)*ivln2lo + lo*ivln2hi; /* spadd(val_hi, val_lo, y), except for not using double_t: */ + y = k; w = y + val_hi; val_lo += (y - w) + val_hi; val_hi = w; diff --git a/src/math/log2f.c b/src/math/log2f.c index e0d6a9e4..b3e305fe 100644 --- a/src/math/log2f.c +++ b/src/math/log2f.c @@ -13,67 +13,62 @@ * See comments in log2.c. */ -#include "libm.h" -#include "__log1pf.h" +#include <math.h> +#include <stdint.h> static const float -two25 = 3.3554432000e+07, /* 0x4c000000 */ ivln2hi = 1.4428710938e+00, /* 0x3fb8b000 */ -ivln2lo = -1.7605285393e-04; /* 0xb9389ad4 */ +ivln2lo = -1.7605285393e-04, /* 0xb9389ad4 */ +/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ +Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */ +Lg2 = 0xccce13.0p-25, /* 0.40000972152 */ +Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */ +Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */ float log2f(float x) { - float f,hfsq,hi,lo,r,y; - int32_t i,k,hx; - - GET_FLOAT_WORD(hx, x); + union {float f; uint32_t i;} u = {x}; + float_t hfsq,f,s,z,R,w,t1,t2,hi,lo; + uint32_t ix; + int k; + ix = u.i; k = 0; - if (hx < 0x00800000) { /* x < 2**-126 */ - if ((hx&0x7fffffff) == 0) - return -two25/0.0f; /* log(+-0)=-inf */ - if (hx < 0) - return (x-x)/0.0f; /* log(-#) = NaN */ + if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */ + if (ix<<1 == 0) + return -1/(x*x); /* log(+-0)=-inf */ + if (ix>>31) + return (x-x)/0.0f; /* log(-#) = NaN */ /* subnormal number, scale up x */ k -= 25; - x *= two25; - GET_FLOAT_WORD(hx, x); - } - if (hx >= 0x7f800000) - return x+x; - if (hx == 0x3f800000) - return 0.0f; /* log(1) = +0 */ - k += (hx>>23) - 127; - hx &= 0x007fffff; - i = (hx+(0x4afb0d))&0x800000; - SET_FLOAT_WORD(x, hx|(i^0x3f800000)); /* normalize x or x/2 */ - k += i>>23; - y = (float)k; - f = x - 1.0f; - hfsq = 0.5f * f * f; - r = __log1pf(f); + x *= 0x1p25f; + u.f = x; + ix = u.i; + } else if (ix >= 0x7f800000) { + return x; + } else if (ix == 0x3f800000) + return 0; - /* - * We no longer need to avoid falling into the multi-precision - * calculations due to compiler bugs breaking Dekker's theorem. - * Keep avoiding this as an optimization. See log2.c for more - * details (some details are here only because the optimization - * is not yet available in double precision). - * - * Another compiler bug turned up. With gcc on i386, - * (ivln2lo + ivln2hi) would be evaluated in float precision - * despite runtime evaluations using double precision. So we - * must cast one of its terms to float_t. This makes the whole - * expression have type float_t, so return is forced to waste - * time clobbering its extra precision. - */ -// FIXME -// if (sizeof(float_t) > sizeof(float)) -// return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y; + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + ix += 0x3f800000 - 0x3f3504f3; + k += (int)(ix>>23) - 0x7f; + ix = (ix&0x007fffff) + 0x3f3504f3; + u.i = ix; + x = u.f; + + f = x - 1.0f; + s = f/(2.0f + f); + z = s*s; + w = z*z; + t1= w*(Lg2+w*Lg4); + t2= z*(Lg1+w*Lg3); + R = t2 + t1; + hfsq = 0.5f*f*f; hi = f - hfsq; - GET_FLOAT_WORD(hx,hi); - SET_FLOAT_WORD(hi,hx&0xfffff000); - lo = (f - hi) - hfsq + r; - return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + y; + u.f = hi; + u.i &= 0xfffff000; + hi = u.f; + lo = f - hi - hfsq + s*(hfsq+R); + return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + k; } diff --git a/src/math/log2l.c b/src/math/log2l.c index 345b395d..d00531d5 100644 --- a/src/math/log2l.c +++ b/src/math/log2l.c @@ -117,7 +117,7 @@ long double log2l(long double x) return x; if (x <= 0.0) { if (x == 0.0) - return -1/(x+0); /* -inf with divbyzero */ + return -1/(x*x); /* -inf with divbyzero */ return 0/0.0f; /* nan with invalid */ } diff --git a/src/math/logf.c b/src/math/logf.c index c7f7dbe6..52230a1b 100644 --- a/src/math/logf.c +++ b/src/math/logf.c @@ -13,12 +13,12 @@ * ==================================================== */ -#include "libm.h" +#include <math.h> +#include <stdint.h> static const float ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ -two25 = 3.355443200e+07, /* 0x4c000000 */ /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */ Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */ Lg2 = 0xccce13.0p-25, /* 0.40000972152 */ @@ -27,61 +27,43 @@ Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */ float logf(float x) { - float hfsq,f,s,z,R,w,t1,t2,dk; - int32_t k,ix,i,j; - - GET_FLOAT_WORD(ix, x); + union {float f; uint32_t i;} u = {x}; + float_t hfsq,f,s,z,R,w,t1,t2,dk; + uint32_t ix; + int k; + ix = u.i; k = 0; - if (ix < 0x00800000) { /* x < 2**-126 */ - if ((ix & 0x7fffffff) == 0) - return -two25/0.0f; /* log(+-0)=-inf */ - if (ix < 0) - return (x-x)/0.0f; /* log(-#) = NaN */ + if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */ + if (ix<<1 == 0) + return -1/(x*x); /* log(+-0)=-inf */ + if (ix>>31) + return (x-x)/0.0f; /* log(-#) = NaN */ /* subnormal number, scale up x */ k -= 25; - x *= two25; - GET_FLOAT_WORD(ix, x); - } - if (ix >= 0x7f800000) - return x+x; - k += (ix>>23) - 127; - ix &= 0x007fffff; - i = (ix + (0x95f64<<3)) & 0x800000; - SET_FLOAT_WORD(x, ix|(i^0x3f800000)); /* normalize x or x/2 */ - k += i>>23; + x *= 0x1p25f; + u.f = x; + ix = u.i; + } else if (ix >= 0x7f800000) { + return x; + } else if (ix == 0x3f800000) + return 0; + + /* reduce x into [sqrt(2)/2, sqrt(2)] */ + ix += 0x3f800000 - 0x3f3504f3; + k += (int)(ix>>23) - 0x7f; + ix = (ix&0x007fffff) + 0x3f3504f3; + u.i = ix; + x = u.f; + f = x - 1.0f; - if ((0x007fffff & (0x8000 + ix)) < 0xc000) { /* -2**-9 <= f < 2**-9 */ - if (f == 0.0f) { - if (k == 0) - return 0.0f; - dk = (float)k; - return dk*ln2_hi + dk*ln2_lo; - } - R = f*f*(0.5f - 0.33333333333333333f*f); - if (k == 0) - return f-R; - dk = (float)k; - return dk*ln2_hi - ((R-dk*ln2_lo)-f); - } s = f/(2.0f + f); - dk = (float)k; z = s*s; - i = ix-(0x6147a<<3); w = z*z; - j = (0x6b851<<3)-ix; t1= w*(Lg2+w*Lg4); t2= z*(Lg1+w*Lg3); - i |= j; R = t2 + t1; - if (i > 0) { - hfsq = 0.5f * f * f; - if (k == 0) - return f - (hfsq-s*(hfsq+R)); - return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); - } else { - if (k == 0) - return f - s*(f-R); - return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f); - } + hfsq = 0.5f*f*f; + dk = k; + return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi; } diff --git a/src/math/logl.c b/src/math/logl.c index ef2b5515..03c5188f 100644 --- a/src/math/logl.c +++ b/src/math/logl.c @@ -35,9 +35,9 @@ * * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * - * Otherwise, setting z = 2(x-1)/x+1), + * Otherwise, setting z = 2(x-1)/(x+1), * - * log(x) = z + z**3 P(z)/Q(z). + * log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z). * * * ACCURACY: @@ -116,7 +116,7 @@ long double logl(long double x) return x; if (x <= 0.0) { if (x == 0.0) - return -1/(x+0); /* -inf with divbyzero */ + return -1/(x*x); /* -inf with divbyzero */ return 0/0.0f; /* nan with invalid */ } @@ -127,7 +127,7 @@ long double logl(long double x) x = frexpl(x, &e); /* logarithm using log(x) = z + z**3 P(z)/Q(z), - * where z = 2(x-1)/x+1) + * where z = 2(x-1)/(x+1) */ if (e > 2 || e < -2) { if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |