summaryrefslogtreecommitdiff
path: root/src/math/atanh.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/atanh.c')
-rw-r--r--src/math/atanh.c67
1 files changed, 15 insertions, 52 deletions
diff --git a/src/math/atanh.c b/src/math/atanh.c
index dbe241d1..84a84c69 100644
--- a/src/math/atanh.c
+++ b/src/math/atanh.c
@@ -1,58 +1,21 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_atanh.c */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-/* atanh(x)
- * Method :
- * 1.Reduced x to positive by atanh(-x) = -atanh(x)
- * 2.For x>=0.5
- * 1 2x x
- * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
- * 2 1 - x 1 - x
- *
- * For x<0.5
- * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
- *
- * Special cases:
- * atanh(x) is NaN if |x| > 1 with signal;
- * atanh(NaN) is that NaN with no signal;
- * atanh(+-1) is +-INF with signal.
- *
- */
-
#include "libm.h"
-static const double huge = 1e300;
-
+/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
double atanh(double x)
{
- double t;
- int32_t hx,ix;
- uint32_t lx;
+ union {double f; uint64_t i;} u = {.f = x};
+ unsigned e = u.i >> 52 & 0x7ff;
+ unsigned s = u.i >> 63;
+
+ /* |x| */
+ u.i &= (uint64_t)-1/2;
+ x = u.f;
- EXTRACT_WORDS(hx, lx, x);
- ix = hx & 0x7fffffff;
- if ((ix | ((lx|-lx)>>31)) > 0x3ff00000) /* |x| > 1 */
- return (x-x)/(x-x);
- if (ix == 0x3ff00000)
- return x/0.0;
- if (ix < 0x3e300000 && (huge+x) > 0.0) /* x < 2**-28 */
- return x;
- SET_HIGH_WORD(x, ix);
- if (ix < 0x3fe00000) { /* x < 0.5 */
- t = x+x;
- t = 0.5*log1p(t + t*x/(1.0-x));
- } else
- t = 0.5*log1p((x+x)/(1.0-x));
- if (hx >= 0)
- return t;
- return -t;
+ if (e < 0x3ff - 1) {
+ /* |x| < 0.5, up to 1.7ulp error */
+ x = 0.5*log1p(2*x + 2*x*x/(1-x));
+ } else {
+ x = 0.5*log1p(2*x/(1-x));
+ }
+ return s ? -x : x;
}