summaryrefslogtreecommitdiff
path: root/src/math/log1p.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/log1p.c')
-rw-r--r--src/math/log1p.c148
1 files changed, 49 insertions, 99 deletions
diff --git a/src/math/log1p.c b/src/math/log1p.c
index a71ac423..00971349 100644
--- a/src/math/log1p.c
+++ b/src/math/log1p.c
@@ -10,6 +10,7 @@
* ====================================================
*/
/* double log1p(double x)
+ * Return the natural logarithm of 1+x.
*
* Method :
* 1. Argument Reduction: find k and f such that
@@ -23,31 +24,9 @@
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
- * 2. Approximation of log1p(f).
- * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- * = 2s + s*R
- * We use a special Reme algorithm on [0,0.1716] to generate
- * a polynomial of degree 14 to approximate R The maximum error
- * of this polynomial approximation is bounded by 2**-58.45. In
- * other words,
- * 2 4 6 8 10 12 14
- * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
- * (the values of Lp1 to Lp7 are listed in the program)
- * and
- * | 2 14 | -58.45
- * | Lp1*s +...+Lp7*s - R(z) | <= 2
- * | |
- * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- * In order to guarantee error in log below 1ulp, we compute log
- * by
- * log1p(f) = f - (hfsq - s*(hfsq+R)).
+ * 2. Approximation of log(1+f): See log.c
*
- * 3. Finally, log1p(x) = k*ln2 + log1p(f).
- * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- * Here ln2 is split into two floating point number:
- * ln2_hi + ln2_lo,
- * where n*ln2_hi is always exact for |n| < 2000.
+ * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
@@ -79,94 +58,65 @@
static const double
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
-two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
-Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
-Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
-Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
-Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
-Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
-Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
-Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
double log1p(double x)
{
- double hfsq,f,c,s,z,R,u;
- int32_t k,hx,hu,ax;
-
- GET_HIGH_WORD(hx, x);
- ax = hx & 0x7fffffff;
+ union {double f; uint64_t i;} u = {x};
+ double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
+ uint32_t hx,hu;
+ int k;
+ hx = u.i>>32;
k = 1;
- if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
- if (ax >= 0x3ff00000) { /* x <= -1.0 */
- if (x == -1.0)
- return -two54/0.0; /* log1p(-1)=+inf */
- return (x-x)/(x-x); /* log1p(x<-1)=NaN */
+ if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
+ if (hx >= 0xbff00000) { /* x <= -1.0 */
+ if (x == -1)
+ return x/0.0; /* log1p(-1) = -inf */
+ return (x-x)/0.0; /* log1p(x<-1) = NaN */
}
- if (ax < 0x3e200000) { /* |x| < 2**-29 */
- /* if 0x1p-1022 <= |x| < 0x1p-54, avoid raising underflow */
- if (ax < 0x3c900000 && ax >= 0x00100000)
- return x;
-#if FLT_EVAL_METHOD != 0
- FORCE_EVAL((float)x);
-#endif
- return x - x*x*0.5;
+ if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
+ /* underflow if subnormal */
+ if ((hx&0x7ff00000) == 0)
+ FORCE_EVAL((float)x);
+ return x;
}
- if (hx > 0 || hx <= (int32_t)0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+ if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
+ c = 0;
f = x;
- hu = 1;
}
- }
- if (hx >= 0x7ff00000)
- return x+x;
- if (k != 0) {
- if (hx < 0x43400000) {
- u = 1 + x;
- GET_HIGH_WORD(hu, u);
- k = (hu>>20) - 1023;
- c = k > 0 ? 1.0-(u-x) : x-(u-1.0); /* correction term */
- c /= u;
- } else {
- u = x;
- GET_HIGH_WORD(hu,u);
- k = (hu>>20) - 1023;
+ } else if (hx >= 0x7ff00000)
+ return x;
+ if (k) {
+ u.f = 1 + x;
+ hu = u.i>>32;
+ hu += 0x3ff00000 - 0x3fe6a09e;
+ k = (int)(hu>>20) - 0x3ff;
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+ if (k < 54) {
+ c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
+ c /= u.f;
+ } else
c = 0;
- }
- hu &= 0x000fffff;
- /*
- * The approximation to sqrt(2) used in thresholds is not
- * critical. However, the ones used above must give less
- * strict bounds than the one here so that the k==0 case is
- * never reached from here, since here we have committed to
- * using the correction term but don't use it if k==0.
- */
- if (hu < 0x6a09e) { /* u ~< sqrt(2) */
- SET_HIGH_WORD(u, hu|0x3ff00000); /* normalize u */
- } else {
- k += 1;
- SET_HIGH_WORD(u, hu|0x3fe00000); /* normalize u/2 */
- hu = (0x00100000-hu)>>2;
- }
- f = u - 1.0;
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */
+ hu = (hu&0x000fffff) + 0x3fe6a09e;
+ u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
+ f = u.f - 1;
}
hfsq = 0.5*f*f;
- if (hu == 0) { /* |f| < 2**-20 */
- if (f == 0.0) {
- if(k == 0)
- return 0.0;
- c += k*ln2_lo;
- return k*ln2_hi + c;
- }
- R = hfsq*(1.0 - 0.66666666666666666*f);
- if (k == 0)
- return f - R;
- return k*ln2_hi - ((R-(k*ln2_lo+c))-f);
- }
s = f/(2.0+f);
z = s*s;
- R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
- if (k == 0)
- return f - (hfsq-s*(hfsq+R));
- return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+ w = z*z;
+ t1 = w*(Lg2+w*(Lg4+w*Lg6));
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2 + t1;
+ dk = k;
+ return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
}