summaryrefslogtreecommitdiff
path: root/src/math/log2.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/log2.c')
-rw-r--r--src/math/log2.c212
1 files changed, 106 insertions, 106 deletions
diff --git a/src/math/log2.c b/src/math/log2.c
index 0aafad4b..1276ed4e 100644
--- a/src/math/log2.c
+++ b/src/math/log2.c
@@ -1,122 +1,122 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * Double-precision log2(x) function.
*
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/*
- * Return the base 2 logarithm of x. See log.c for most comments.
- *
- * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
- * as in log.c, then combine and scale in extra precision:
- * log2(x) = (f - f*f/2 + r)/log(2) + k
+ * Copyright (c) 2018, Arm Limited.
+ * SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
+#include "libm.h"
+#include "log2_data.h"
-static const double
-ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
-ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
-Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+#define T __log2_data.tab
+#define T2 __log2_data.tab2
+#define B __log2_data.poly1
+#define A __log2_data.poly
+#define InvLn2hi __log2_data.invln2hi
+#define InvLn2lo __log2_data.invln2lo
+#define N (1 << LOG2_TABLE_BITS)
+#define OFF 0x3fe6000000000000
-double log2(double x)
+/* Top 16 bits of a double. */
+static inline uint32_t top16(double x)
{
- union {double f; uint64_t i;} u = {x};
- double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
- uint32_t hx;
- int k;
-
- hx = u.i>>32;
- k = 0;
- if (hx < 0x00100000 || hx>>31) {
- if (u.i<<1 == 0)
- return -1/(x*x); /* log(+-0)=-inf */
- if (hx>>31)
- return (x-x)/0.0; /* log(-#) = NaN */
- /* subnormal number, scale x up */
- k -= 54;
- x *= 0x1p54;
- u.f = x;
- hx = u.i>>32;
- } else if (hx >= 0x7ff00000) {
- return x;
- } else if (hx == 0x3ff00000 && u.i<<32 == 0)
- return 0;
-
- /* reduce x into [sqrt(2)/2, sqrt(2)] */
- hx += 0x3ff00000 - 0x3fe6a09e;
- k += (int)(hx>>20) - 0x3ff;
- hx = (hx&0x000fffff) + 0x3fe6a09e;
- u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
- x = u.f;
+ return asuint64(x) >> 48;
+}
- f = x - 1.0;
- hfsq = 0.5*f*f;
- s = f/(2.0+f);
- z = s*s;
- w = z*z;
- t1 = w*(Lg2+w*(Lg4+w*Lg6));
- t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
- R = t2 + t1;
+double log2(double x)
+{
+ double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
+ uint64_t ix, iz, tmp;
+ uint32_t top;
+ int k, i;
- /*
- * f-hfsq must (for args near 1) be evaluated in extra precision
- * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
- * This is fairly efficient since f-hfsq only depends on f, so can
- * be evaluated in parallel with R. Not combining hfsq with R also
- * keeps R small (though not as small as a true `lo' term would be),
- * so that extra precision is not needed for terms involving R.
- *
- * Compiler bugs involving extra precision used to break Dekker's
- * theorem for spitting f-hfsq as hi+lo, unless double_t was used
- * or the multi-precision calculations were avoided when double_t
- * has extra precision. These problems are now automatically
- * avoided as a side effect of the optimization of combining the
- * Dekker splitting step with the clear-low-bits step.
- *
- * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
- * precision to avoid a very large cancellation when x is very near
- * these values. Unlike the above cancellations, this problem is
- * specific to base 2. It is strange that adding +-1 is so much
- * harder than adding +-ln2 or +-log10_2.
- *
- * This uses Dekker's theorem to normalize y+val_hi, so the
- * compiler bugs are back in some configurations, sigh. And I
- * don't want to used double_t to avoid them, since that gives a
- * pessimization and the support for avoiding the pessimization
- * is not yet available.
- *
- * The multi-precision calculations for the multiplications are
- * routine.
- */
+ ix = asuint64(x);
+ top = top16(x);
+#define LO asuint64(1.0 - 0x1.5b51p-5)
+#define HI asuint64(1.0 + 0x1.6ab2p-5)
+ if (predict_false(ix - LO < HI - LO)) {
+ /* Handle close to 1.0 inputs separately. */
+ /* Fix sign of zero with downward rounding when x==1. */
+ if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
+ return 0;
+ r = x - 1.0;
+#if __FP_FAST_FMA
+ hi = r * InvLn2hi;
+ lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
+#else
+ double_t rhi, rlo;
+ rhi = asdouble(asuint64(r) & -1ULL << 32);
+ rlo = r - rhi;
+ hi = rhi * InvLn2hi;
+ lo = rlo * InvLn2hi + r * InvLn2lo;
+#endif
+ r2 = r * r; /* rounding error: 0x1p-62. */
+ r4 = r2 * r2;
+ /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */
+ p = r2 * (B[0] + r * B[1]);
+ y = hi + p;
+ lo += hi - y + p;
+ lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
+ r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
+ y += lo;
+ return eval_as_double(y);
+ }
+ if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
+ /* x < 0x1p-1022 or inf or nan. */
+ if (ix * 2 == 0)
+ return __math_divzero(1);
+ if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
+ return x;
+ if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
+ return __math_invalid(x);
+ /* x is subnormal, normalize it. */
+ ix = asuint64(x * 0x1p52);
+ ix -= 52ULL << 52;
+ }
- /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
- hi = f - hfsq;
- u.f = hi;
- u.i &= (uint64_t)-1<<32;
- hi = u.f;
- lo = f - hi - hfsq + s*(hfsq+R);
+ /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
+ The range is split into N subintervals.
+ The ith subinterval contains z and c is near its center. */
+ tmp = ix - OFF;
+ i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
+ k = (int64_t)tmp >> 52; /* arithmetic shift */
+ iz = ix - (tmp & 0xfffULL << 52);
+ invc = T[i].invc;
+ logc = T[i].logc;
+ z = asdouble(iz);
+ kd = (double_t)k;
- val_hi = hi*ivln2hi;
- val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
+ /* log2(x) = log2(z/c) + log2(c) + k. */
+ /* r ~= z/c - 1, |r| < 1/(2*N). */
+#if __FP_FAST_FMA
+ /* rounding error: 0x1p-55/N. */
+ r = __builtin_fma(z, invc, -1.0);
+ t1 = r * InvLn2hi;
+ t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
+#else
+ double_t rhi, rlo;
+ /* rounding error: 0x1p-55/N + 0x1p-65. */
+ r = (z - T2[i].chi - T2[i].clo) * invc;
+ rhi = asdouble(asuint64(r) & -1ULL << 32);
+ rlo = r - rhi;
+ t1 = rhi * InvLn2hi;
+ t2 = rlo * InvLn2hi + r * InvLn2lo;
+#endif
- /* spadd(val_hi, val_lo, y), except for not using double_t: */
- y = k;
- w = y + val_hi;
- val_lo += (y - w) + val_hi;
- val_hi = w;
+ /* hi + lo = r/ln2 + log2(c) + k. */
+ t3 = kd + logc;
+ hi = t3 + t1;
+ lo = t3 - hi + t1 + t2;
- return val_lo + val_hi;
+ /* log2(r+1) = r/ln2 + r^2*poly(r). */
+ /* Evaluation is optimized assuming superscalar pipelined execution. */
+ r2 = r * r; /* rounding error: 0x1p-54/N^2. */
+ r4 = r2 * r2;
+ /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
+ ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */
+ p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
+ y = lo + r2 * p + hi;
+ return eval_as_double(y);
}