diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/math/powl.c | 139 |
1 files changed, 47 insertions, 92 deletions
diff --git a/src/math/powl.c b/src/math/powl.c index a1d2f076..2ee0b10b 100644 --- a/src/math/powl.c +++ b/src/math/powl.c @@ -78,8 +78,6 @@ long double powl(long double x, long double y) /* Table size */ #define NXT 32 -/* log2(Table size) */ -#define LNXT 5 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 @@ -203,38 +201,35 @@ long double powl(long double x, long double y) volatile long double z=0; long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0; - if (y == 0.0) - return 1.0; - if (isnan(x)) + /* make sure no invalid exception is raised by nan comparision */ + if (isnan(x)) { + if (!isnan(y) && y == 0.0) + return 1.0; return x; - if (isnan(y)) + } + if (isnan(y)) { + if (x == 1.0) + return 1.0; return y; + } + if (x == 1.0) + return 1.0; /* 1**y = 1, even if y is nan */ + if (x == -1.0 && !isfinite(y)) + return 1.0; /* -1**inf = 1 */ + if (y == 0.0) + return 1.0; /* x**0 = 1, even if x is nan */ if (y == 1.0) return x; - - // FIXME: this is wrong, see pow special cases in c99 F.9.4.4 - if (!isfinite(y) && (x == -1.0 || x == 1.0) ) - return y - y; /* +-1**inf is NaN */ - if (x == 1.0) - return 1.0; if (y >= LDBL_MAX) { - if (x > 1.0) + if (x > 1.0 || x < -1.0) return INFINITY; - if (x > 0.0 && x < 1.0) - return 0.0; - if (x < -1.0) - return INFINITY; - if (x > -1.0 && x < 0.0) + if (x != 0.0) return 0.0; } if (y <= -LDBL_MAX) { - if (x > 1.0) + if (x > 1.0 || x < -1.0) return 0.0; - if (x > 0.0 && x < 1.0) - return INFINITY; - if (x < -1.0) - return 0.0; - if (x > -1.0 && x < 0.0) + if (x != 0.0) return INFINITY; } if (x >= LDBL_MAX) { @@ -244,6 +239,7 @@ long double powl(long double x, long double y) } w = floorl(y); + /* Set iyflg to 1 if y is an integer. */ iyflg = 0; if (w == y) @@ -271,43 +267,33 @@ long double powl(long double x, long double y) return 0.0; } } - - - nflg = 0; /* flag = 1 if x<0 raised to integer power */ + nflg = 0; /* (x<0)**(odd int) */ if (x <= 0.0) { if (x == 0.0) { if (y < 0.0) { if (signbit(x) && yoddint) - return -INFINITY; - return INFINITY; + /* (-0.0)**(-odd int) = -inf, divbyzero */ + return -1.0/0.0; + /* (+-0.0)**(negative) = inf, divbyzero */ + return 1.0/0.0; } - if (y > 0.0) { - if (signbit(x) && yoddint) - return -0.0; - return 0.0; - } - if (y == 0.0) - return 1.0; /* 0**0 */ - return 0.0; /* 0**y */ + if (signbit(x) && yoddint) + return -0.0; + return 0.0; } if (iyflg == 0) return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ - nflg = 1; + /* (x<0)**(integer) */ + if (yoddint) + nflg = 1; /* negate result */ + x = -x; } - - /* Integer power of an integer. */ - if (iyflg) { - i = w; - w = floorl(x); - if (w == x && fabsl(y) < 32768.0) { - w = powil(x, (int)y); - return w; - } + /* (+integer)**(integer) */ + if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) { + w = powil(x, (int)y); + return nflg ? -w : w; } - if (nflg) - x = fabsl(x); - /* separate significand from exponent */ x = frexpl(x, &i); e = i; @@ -354,9 +340,7 @@ long double powl(long double x, long double y) z += x; /* Compute exponent term of the base 2 logarithm. */ - w = -i; - // TODO: use w * 0x1p-5; - w = scalbnl(w, -LNXT); /* divide by NXT */ + w = -i / NXT; w += e; /* Now base 2 log of x is w + z. */ @@ -381,7 +365,7 @@ long double powl(long double x, long double y) H = Fb + Gb; Ha = reducl(H); - w = scalbnl( Ga+Ha, LNXT ); + w = (Ga + Ha) * NXT; /* Test the power of 2 for overflow */ if (w > MEXP) @@ -418,18 +402,8 @@ long double powl(long double x, long double y) z = z + w; z = scalbnl(z, i); /* multiply by integer power of 2 */ - if (nflg) { - /* For negative x, - * find out if the integer exponent - * is odd or even. - */ - w = 0.5*y; - w = floorl(w); - w = 2.0*w; - if (w != y) - z = -z; /* odd exponent */ - } - + if (nflg) + z = -z; return z; } @@ -439,15 +413,14 @@ static long double reducl(long double x) { long double t; - t = scalbnl(x, LNXT); + t = x * NXT; t = floorl(t); - t = scalbnl(t, -LNXT); + t = t / NXT; return t; } -/* powil.c - * - * Real raised to integer power, long double precision +/* + * Positive real raised to integer power, long double precision * * * SYNOPSIS: @@ -460,7 +433,7 @@ static long double reducl(long double x) * * DESCRIPTION: * - * Returns argument x raised to the nth power. + * Returns argument x>0 raised to the nth power. * The routine efficiently decomposes n as a sum of powers of * two. The desired power is a product of two-to-the-kth * powers of x. Thus to compute the 32767 power of x requires @@ -482,25 +455,11 @@ static long double powil(long double x, int nn) { long double ww, y; long double s; - int n, e, sign, asign, lx; - - if (x == 0.0) { - if (nn == 0) - return 1.0; - else if (nn < 0) - return LDBL_MAX; - return 0.0; - } + int n, e, sign, lx; if (nn == 0) return 1.0; - if (x < 0.0) { - asign = -1; - x = -x; - } else - asign = 0; - if (nn < 0) { sign = -1; n = -nn; @@ -539,10 +498,8 @@ static long double powil(long double x, int nn) /* First bit of the power */ if (n & 1) y = x; - else { + else y = 1.0; - asign = 0; - } ww = x; n >>= 1; @@ -553,8 +510,6 @@ static long double powil(long double x, int nn) n >>= 1; } - if (asign) - y = -y; /* odd power of negative number */ if (sign < 0) y = 1.0/y; return y; |