Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
this will allow the compiler to cache and reuse the result, meaning we
no longer have to take care not to load it more than once for the sake
of archs where the load may be expensive.
depends on commit 1c84c99913bf1cd47b866ed31e665848a0da84a2 for
correctness, since otherwise the compiler could hoist loads during
stage 3 of dynamic linking before the initial thread-pointer setup.
|
|
These should have been added in commit
df6d9450ea19fd71e52cf5cdb4c85beb73066394
that added target specific PTRACE_ macros, but somehow got missed.
|
|
these were overlooked in the declarations overhaul work because they
are not properly declared, and the current framework even allows their
declared types to vary by arch. at some point this should be cleaned
up, but I'm not sure what the right way would be.
|
|
this cleans up what had become widespread direct inline use of "GNU C"
style attributes directly in the source, and lowers the barrier to
increased use of hidden visibility, which will be useful to recovering
some of the efficiency lost when the protected visibility hack was
dropped in commit dc2f368e565c37728b0d620380b849c3a1ddd78f, especially
on archs where the PLT ABI is costly.
|
|
if __cp_cancel was reached via __syscall_cp, r12 will necessarily
still contain a GOT pointer (for libc.so or for the static-linked main
program) valid for entering __cancel. however, in the case of async
cancellation, r12 may contain any scratch value; it's not necessarily
even a valid GOT pointer for the code that was interrupted.
unlike in commit 0ec49dab6794166d67fae4764ce7fdea42ea6103 where the
corresponding issue was fixed for powerpc64, there is fundamentally no
way for fdpic code to recompute its GOT pointer. so a new mechanism is
introduced for cancel_handler to write a GOT register value into the
interrupted context on archs where it is needed.
|
|
the mode member of struct ipc_perm is specified by POSIX to have type
mode_t, which is uniformly defined as unsigned int. however, Linux
defines it with type __kernel_mode_t, and defines __kernel_mode_t as
unsigned short on some archs. since there is a subsequent padding
field, treating it as a 32-bit unsigned int works on little endian
archs, but the order is backwards on big endian archs with the
erroneous definition.
since multiple archs are affected, remedy the situation with fixup
code in the affected functions (shmctl, semctl, and msgctl) rather
than repeating the same shims in syscall_arch.h for every affected
arch.
|
|
In TLS variant I the TLS is above TP (or above a fixed offset from TP)
but on some targets there is a reserved gap above TP before TLS starts.
This matters for the local-exec tls access model when the offsets of
TLS variables from the TP are hard coded by the linker into the
executable, so the libc must compute these offsets the same way as the
linker. The tls offset of the main module has to be
alignup(GAP_ABOVE_TP, main_tls_align).
If there is no TLS in the main module then the gap can be ignored
since musl does not use it and the tls access models of shared
libraries are not affected.
The previous setup only worked if (tls_align & -GAP_ABOVE_TP) == 0
(i.e. TLS did not require large alignment) because the gap was
treated as a fixed offset from TP. Now the TP points at the end
of the pthread struct (which is aligned) and there is a gap above
it (which may also need alignment).
The fix required changing TP_ADJ and __pthread_self on affected
targets (aarch64, arm and sh) and in the tlsdesc asm the offset to
access the dtv changed too.
|
|
PAGESIZE is actually the version defined in POSIX base, with PAGE_SIZE
being in the XSI option. use PAGESIZE as the underlying definition to
facilitate making exposure of PAGE_SIZE conditional.
|
|
added for safe opening of peer end of pty in a mount namespace.
new in linux commit c6325179238f1d4683edbec53d8322575d76d7e2
|
|
it is defined in linux asm/sockios.h since commit
ae40eb1ef30ab4120bd3c8b7e3da99ee53d27a23 (linux v2.6.22)
but was missing from musl by accident.
in musl the sockios macros are exposed in sys/ioctl.h together
with other ioctl requests instead of in sys/socket.h because of
namespace rules. (glibc has them in sys/socket.h under _GNU_SOURCE.)
|
|
Due to a missing ":" in an asm() statement, the "memory" clobber is
considered by gcc as an input operand and not a clobber, which causes a
build failure.
|
|
aarch64, arm, mips, mips64, mipsn32, powerpc, powerpc64 and sh have
cpu feature bits defined in linux for AT_HWCAP auxv entry, so expose
those in sys/auxv.h
it seems the mips hwcaps were never exposed to userspace neither
by linux nor by glibc, but that's most likely an oversight.
|
|
sh was updated in linux commit 74bdaa611fa69368fb4032ad437af073d31116bd
to have numbers for new syscalls.
|
|
despite sh not generally using register-pair alignment for 64-bit
syscall arguments, there are arch-specific versions of the syscall
entry points for pread and pwrite which include a dummy argument for
alignment before the 64-bit offset argument.
|
|
placing the opening brace on the same line as the struct keyword/tag
is the style I prefer and seems to be the prevailing practice in more
recent additions.
these changes were generated by the command:
find include/ arch/*/bits -name '*.h' \
-exec sed -i '/^struct [^;{]*$/{N;s/\n/ /;}' {} +
and subsequently checked by hand to ensure that the regex did not pick
up any false positives.
|
|
musl does not define these on other targets either.
|
|
these are defined in linux asm/ioctls.h.
(powerpc64 and powerpc bits/ioctl.h are now identical)
|
|
glibc ioctl.h has it too.
|
|
TIOCTTYGSTRUCT, TIOCGHAYESESP, TIOCSHAYESESP and TIOCM_MODEM_BITS
were removed from the linux uapi and not present in glibc ioctl.h
|
|
|
|
currently five targets use the same mman.h constants and the rest
share most constants too, so move them to sys/mman.h before the
bits/mman.h include where the differences can be corrected by
redefinition of the macros.
this fixes two minor bugs: POSIX_MADV_DONTNEED was wrong on most
targets (it should be the same as MADV_DONTNEED), and sh defined
the x86-only MAP_32BIT mmap flag.
|
|
all bits headers that were identical for a number of 'clean' archs are
moved to the new arch/generic tree. in addition, a few headers that
differed only cosmetically from the new generic version are removed.
additional deduplication may be possible in mman.h and in several
headers (limits.h, posix.h, stdint.h) that mostly depend on whether
the arch is 32- or 64-bit, but they are left alone for now because
greater gains are likely possible with more invasive changes to header
logic, which is beyond the scope of this commit.
|
|
they lock faulted pages into memory (useful when a small part of a
large mapped file needs efficient access), new in linux v4.4, commit
b0f205c2a3082dd9081f9a94e50658c5fa906ff1
MLOCK_* is not in the POSIX reserved namespace for sys/mman.h
|
|
commit f3ddd173806fd5c60b3f034528ca24542aecc5b9, the dynamic linker
bootstrap overhaul, silently disabled the definition of __fpscr_values
in this file since libc.so's copy of __fpscr_values now comes from
crt_arch.h, the same place the public definition in the main program's
crt1.o ultimately comes from. remove this file which is no longer in
use.
|
|
|
|
|
|
sh needs runtime-selected atomic backends since there are a number of
supported models that use non-forwards-compatible (non-smp-compatible)
atomic mechanisms. previously, the code paths for this were highly
inefficient since they involved C function calls with multiple
branches in the callee and heavy spills in the caller. the new code
performs calls the runtime-selected asm fragment from inline asm with
extremely minimal clobbers, rather than using a function call.
for the sh4a case where the atomic mechanism is known and there is no
forward-compatibility issue, the movli.l and movco.l instructions are
provided as a_ll and a_sc, allowing the new shared atomic.h to
generate efficient inline versions of all the basic atomic operations
without needing a cas loop.
|
|
rather than having each arch provide its own atomic.h, there is a new
shared atomic.h in src/internal which pulls arch-specific definitions
from arc/$(ARCH)/atomic_arch.h. the latter can be extremely minimal,
defining only a_cas or new ll/sc type primitives which the shared
atomic.h will use to construct everything else.
this commit avoids making heavy changes to the individual archs'
atomic implementations. definitions which are identical or
near-identical to what the new shared atomic.h would produce have been
removed, but otherwise the changes made are just hooking up the
arch-specific files to the new infrastructure. major changes to take
advantage of the new system will come in subsequent commits.
|
|
on linux/nommu, non-writable private mappings of files may actually
use memory shared with other processes or the fs cache. the old nommu
loader code (used when mmap with MAP_FIXED fails) simply wrote over
top of the original file mapping, possibly clobbering this shared
memory. no such breakage was observed in practice, but it should have
been possible.
the new code starts by mapping anonymous writable memory on archs that
might support nommu, then maps load segments over top of it, falling
back to read if MAP_FIXED fails. we use an anonymous map rather than a
writable file map to avoid reading more data from disk than needed.
since pages cannot be loaded lazily on fault, in case of large
data/bss, mapping the full file may read a lot of data that will
subsequently be thrown away when processing additional LOAD segments.
as a result, we cannot skip the first LOAD segment when operating in
this mode.
these changes affect only non-FDPIC nommu support.
|
|
this assumption is borderline-unsafe to begin with, and fails badly
with -ffunction-sections since the linker can move the callee
arbitrarily far away when it lies in a different section.
|
|
using the actual mcontext_t definition rather than an overlaid pointer
array both improves correctness/readability and eliminates some ugly
hacks for archs with 64-bit registers bit 32-bit program counter.
also fix UB due to comparison of pointers not in a common array
object.
|
|
the restorer function pointer provided in the kernel sigaction
structure is interpreted by the kernel as a raw code address, not a
function descriptor.
this commit moves the declarations of the __restore and __restore_rt
symbols to ksigaction.h so that arch versions of the file can override
them, and introduces a version for sh which declares them as objects
rather than functions.
an alternate solution would have been defining SA_RESTORER to 0 so
that the functions are not used, but this both requires executable
stack (since the sh kernel does not have a vdso page with permanent
restorer functions) and crashes on qemu user-level emulation.
|
|
the entry point code supports being loaded by a loader which is not
fdpic-aware (in practice, either kernel with mmu or qemu without fdpic
support). this mostly just works, but signal handling will wrongly use
a function descriptor address as a code address if the personality is
not adjusted to fdpic.
ideally this code could be placed with sigaction so that it's not
needed except if/when a signal handler is installed. however,
personality is incorrectly maintained per-thread by the kernel, rather
than per-process, so it's necessary to correct the personality before
any threads are started. also, in order to skip the personality
syscall when an fdpic-aware loader is used, we need to be able to
detect how the program was loaded, and this information is only
readily available at the entry point.
|
|
previously, the normal ELF library loading code was used even for
fdpic, so only the kernel-loaded dynamic linker and main app could
benefit from separate placement of segments and shared text.
|
|
the __fdpic_fixup code is not needed for ET_DYN executables, which
instead use reloctions, so we can omit it from the dynamic linker and
static-pie entry point and save some code size.
|
|
the C implementation of __unmapself used for potentially-nommu sh
assumed CRTJMP takes a function descriptor rather than a code address;
however, the actual dynamic linker needs a code address, and so commit
7a9669e977e5f750cf72ccbd2614f8b72ce02c4c changed the definition of the
macro in reloc.h. this commit puts the old macro back in a place where
it only affects __unmapself.
this is an ugly workaround and should be cleaned up at some point, but
at least it's well isolated.
|
|
at this point not all functionality is complete. the dynamic linker
itself, and main app if it is also loaded by the kernel, take
advantage of fdpic and do not need constant displacement between
segments, but additional libraries loaded by the dynamic linker follow
normal ELF semantics for mapping still. this fully works, but does not
admit shared text on nommu.
in terms of actual functional correctness, dlsym's results are
presently incorrect for function symbols, RTLD_NEXT fails to identify
the caller correctly, and dladdr fails almost entirely.
with the dynamic linker entry point working, support for static pie is
automatically included, but linking the main application as ET_DYN
(pie) probably does not make sense for fdpic anyway. ET_EXEC is
equally relocatable but more efficient at representing relocations.
|
|
with this commit it should be possible to produce a working
static-linked fdpic libc and application binaries for sh.
the changes in reloc.h are largely unused at this point since dynamic
linking is not supported, but the CRTJMP macro is used one place
outside of dynamic linking, in __unmapself.
|
|
this version of the entry point is only suitable for static linking in
ET_EXEC form. neither dynamic linking nor pie is supported yet. at
some point in the future the fdpic and non-fdpic versions of this code
may be unified but for now it's easiest to work with them separately.
|
|
clone calls back to a function pointer provided by the caller, which
will actually be a pointer to a function descriptor on fdpic. the
obvious solution is to have a separate version of clone for fdpic, but
I have taken a simpler approach to go around the problem. instead of
calling the pointed-to function from asm, a direct call is made to an
internal C function which then calls the pointed-to function. this
lets the C compiler generate the appropriate calling convention for an
indirect call with no need for ABI-specific assembly.
|
|
nominally the low bits of the trap number on sh are the number of
syscall arguments, but they have never been used by the kernel, and
some code making syscalls does not even know the number of arguments
and needs to pass an arbitrary high number anyway.
sh3/sh4 traditionally used the trap range 16-31 for syscalls, but part
of this range overlapped with hardware exceptions/interrupts on sh2
hardware, so an incompatible range 32-47 was chosen for sh2.
using trap number 31 everywhere, since it's in the existing sh3/sh4
range and does not conflict with sh2 hardware, is a proposed
unification of the kernel syscall convention that will allow binaries
to be shared between sh2 and sh3/sh4. if this is not accepted into the
kernel, we can refit the sh2 target with runtime selection mechanisms
for the trap number, but doing so would be invasive and would entail
non-trivial overhead.
|
|
due to the way the interrupt and syscall trap mechanism works,
userspace on sh2 must never set the stack pointer to an invalid value.
thus, the approach used on most archs, where __unmapself executes with
no stack for the interval between SYS_munmap and SYS_exit, is not
viable on sh2.
in order not to pessimize sh3/sh4, the sh asm version of __unmapself
is not removed. instead it's renamed and redirected through code that
calls either the generic (safe) __unmapself or the sh3/sh4 asm,
depending on compile-time and run-time conditions.
|
|
the sh2 target is being considered an ISA subset of sh3/sh4, in the
sense that binaries built for sh2 are intended to be usable on later
cpu models/kernels with mmu support. so rather than hard-coding
sh2-specific atomics, the runtime atomic selection mechanisms that was
already in place has been extended to add sh2 atomics.
at this time, the sh2 atomics are not SMP-compatible; since the ISA
lacks actual atomic operations, the new code instead masks interrupts
for the duration of the atomic operation, producing an atomic result
on single-core. this is only possible because the kernel/hardware does
not impose protections against userspace doing so. additional changes
will be needed to support future SMP systems.
care has been taken to avoid producing significant additional code
size in the case where it's known at compile-time that the target is
not sh2 and does not need sh2-specific code.
|
|
i386 and x86_64 versions already had the .text directive; other archs
did not. normally, top-level (file scope) __asm__ starts in the .text
section anyway, but problems were reported with some versions of
clang, and it seems preferable to set it explicitly anyway, at least
for the sake of consistency between archs.
|
|
If we're building for sh4a, the compiler is already free to use
instructions only available on sh4a, so we can do the same and inline the
llsc atomics. If we're building for an older processor, we still do the
same runtime atomics selection as before.
|
|
while the sh port is still experimental and subject to ABI
instability, this is not actually an application/libc boundary ABI
change. it only affects third-party APIs where jmp_buf is used in a
shared structure at the ABI boundary, because nothing anywhere near
the end of the jmp_buf object (which includes the oversized sigset_t)
is accessed by libc.
both glibc and uclibc have 15-slot jmp_buf for sh. presumably the
smaller version was used in musl because the slots for fpu status
register and thread pointer register (gbr) were incorrect and must not
be restored by longjmp, but the size should have been preserved, as
it's generally treated as a libc-agnostic ABI property for the arch,
and having extra slots free in case we ever need them for something is
useful anyway.
|
|
previously it was using the same name as the default ABI with hard
float (floating point args and return value in registers).
the test __SH_FPU_ANY__ || __SH4__ matches what's used in the
configure script already, and seems correct under casual review
against gcc's config/sh.h, but may need tweaks. the logic for
predefined macros for sh, and what they all mean, is very complex.
eventually this should be documented in comments here.
configure already rejects "half-hard" configurations on sh where
double=float since these do not conform to Annex F and are not
suitable for musl, so these do not need to be considered here.
|
|
versions of reloc.h that rely on endian macros much include endian.h
to ensure they are available.
|
|
this overhaul further reduces the amount of arch-specific code needed
by the dynamic linker and removes a number of assumptions, including:
- that symbolic function references inside libc are bound at link time
via the linker option -Bsymbolic-functions.
- that libc functions used by the dynamic linker do not require
access to data symbols.
- that static/internal function calls and data accesses can be made
without performing any relocations, or that arch-specific startup
code handled any such relocations needed.
removing these assumptions paves the way for allowing libc.so itself
to be built with stack protector (among other things), and is achieved
by a three-stage bootstrap process:
1. relative relocations are processed with a flat function.
2. symbolic relocations are processed with no external calls/data.
3. main program and dependency libs are processed with a
fully-functional libc/ldso.
reduction in arch-specific code is achived through the following:
- crt_arch.h, used for generating crt1.o, now provides the entry point
for the dynamic linker too.
- asm is no longer responsible for skipping the beginning of argv[]
when ldso is invoked as a command.
- the functionality previously provided by __reloc_self for heavily
GOT-dependent RISC archs is now the arch-agnostic stage-1.
- arch-specific relocation type codes are mapped directly as macros
rather than via an inline translation function/switch statement.
|