Age | Commit message (Collapse) | Author | Files | Lines |
|
vdso support is available on mips starting with kernel 4.4, see kernel
commit a7f4df4e21 "MIPS: VDSO: Add implementations of gettimeofday()
and clock_gettime()" for details.
In Linux kernel 4.4.0 the mips code returns -ENOSYS in case it can not
handle the vdso call and assumes the libc will call the original
syscall in this case. Handle this case in musl. Currently Linux kernel
4.4.0 handles the following types: CLOCK_REALTIME_COARSE,
CLOCK_MONOTONIC_COARSE, CLOCK_REALTIME and CLOCK_MONOTONIC.
|
|
si_errno and si_code are swapped in mips siginfo_t compared to other
archs and some si_code values are different. This fix is required
for POSIX timers to work.
based on patch by Dmitry Ivanov.
|
|
they lock faulted pages into memory (useful when a small part of a
large mapped file needs efficient access), new in linux v4.4, commit
b0f205c2a3082dd9081f9a94e50658c5fa906ff1
MLOCK_* is not in the POSIX reserved namespace for sys/mman.h
|
|
this is mlock with a flags argument, new in linux commit
a8ca5d0ecbdde5cc3d7accacbd69968b0c98764e
as usual microblaze and sh don't have allocated syscall number yet.
|
|
new in linux v4.3 added for aarch64, arm, i386, mips, or1k, powerpc,
x32 and x86_64.
membarrier is a system wide memory barrier, moves most of the
synchronization cost to one side, new in kernel commit
5b25b13ab08f616efd566347d809b4ece54570d1
userfaultfd is useful for qemu and is new in kernel commit
8d2afd96c20316d112e04d935d9e09150e988397
switch_endian is powerpc only for switching endianness, new in commit
529d235a0e190ded1d21ccc80a73e625ebcad09b
|
|
new in linux v4.3 commit 9dea5dc921b5f4045a18c63eb92e84dc274d17eb
direct calls instead of socketcall allow better seccomp filtering.
musl continues to use socketcalls internally on i386. (older kernels
would need a fallback mechanism if the direct calls were used.)
|
|
only use SYS_socketcall if SYSCALL_USE_SOCKETCALL is defined
internally, otherwise use direct syscalls.
this commit does not change the current behaviour, it is
preparation for adding direct syscall numbers for i386.
|
|
contrary to commit 89e149d275a7699a4a5e4c98bab267648f64cbba, big
endian arm does need the instruction bytes in big endian order. rather
than trying to use a special encoding that works as arm or thumb,
simply encode the simplest/canonical undefined instructions dependent
on whether __thumb__ is defined.
|
|
the .byte directive encodes a guaranteed-undefined instruction, the
same one Linux fills the kuser helper page with when it's disabled.
the udf mnemonic and and .insn directives are not supported by old
binutils versions, and larger-than-byte integer directives would
produce the wrong output on big-endian.
|
|
remove ifdefs for powerpc64.
|
|
this flag for strong access ordering was added in linux v2.6.27
commit aba46c5027cb59d98052231b36efcbbde9c77a1d
|
|
the definitions didn't match the linux uapi headers.
|
|
a_ll/a_sc inline asm used 64bit register operands (%0) instead of 32bit
ones (%w0), this at least broke a_and_64 (which always cleared the top
32bit, leaking memory in malloc).
|
|
aarch64 provides ll/sc variants with acquire/release memory order,
freeing us from the need to have full barriers both before and after
the ll/sc operation. previously they were not used because the a_cas
can fail without performing a_sc, in which case half of the barrier
would be omitted. instead, define a custom version of a_cas for
aarch64 which uses a_barrier explicitly when aborting the cas
operation. aside from cas, other operations built on top of ll/sc are
not affected since they never abort but rather loop until they
succeed.
a split ll/sc version of the pointer-sized a_cas_p is also introduced
using the same technique.
patch by Szabolcs Nagy.
|
|
commit f3ddd173806fd5c60b3f034528ca24542aecc5b9, the dynamic linker
bootstrap overhaul, silently disabled the definition of __fpscr_values
in this file since libc.so's copy of __fpscr_values now comes from
crt_arch.h, the same place the public definition in the main program's
crt1.o ultimately comes from. remove this file which is no longer in
use.
|
|
|
|
|
|
all such arch-specific translation units are being moved to
appropriate arch dirs under the main src tree.
|
|
previously powerpc had a_cas defined in terms of its native ll/sc
style operations, but all other atomics were defined in terms of
a_cas. instead define a_ll and a_sc so the compiler can generate
optimized versions of all the atomic ops and perform better inlining
of a_cas.
extracting the result of the sc (stwcx.) instruction is rather awkward
because it's natively stored in a condition flag, which is not
representable in inline asm. but even with this limitation the new
code still seems significantly better.
|
|
this commit mostly makes consistent things like spacing, function
ordering in atomic_arch.h, argument names, use of volatile, etc.
a_ctz_l was also removed from x86_64 since atomic.h provides it
automatically using a_ctz_64.
|
|
this commit mostly makes consistent things like spacing, function
ordering in atomic_arch.h, argument names, use of volatile, etc. the
fake 64-bit and/or atomics are also removed because the shared
atomic.h does a better job of implementing them; it avoids making two
atomic memory accesses when only one 32-bit half needs to be touched.
no major overhaul is needed or possible because x86 actually has
native versions of all the usual atomic operations, rather than using
ll/sc or needing cas loops.
|
|
|
|
this is possible with the new build system that allows src/*/$(ARCH)/*
files which do not shadow a file in the parent directory, and yields a
more logical organization. eventually it will be possible to remove
arch/*/src from the build system.
|
|
switch to ll/sc model so that new atomic.h can provide optimized
versions of all the atomic primitives without needing an ll/sc loop
written in asm for each one.
all isa levels which use ldrex/strex now use the inline ll/sc model
even if the type of barrier to use is not known until runtime (v6).
the cas model is only used for arm v5 and earlier, and it has been
optimized to make the call via inline asm with custom constraints
rather than as a C function call.
|
|
|
|
sh needs runtime-selected atomic backends since there are a number of
supported models that use non-forwards-compatible (non-smp-compatible)
atomic mechanisms. previously, the code paths for this were highly
inefficient since they involved C function calls with multiple
branches in the callee and heavy spills in the caller. the new code
performs calls the runtime-selected asm fragment from inline asm with
extremely minimal clobbers, rather than using a function call.
for the sh4a case where the atomic mechanism is known and there is no
forward-compatibility issue, the movli.l and movco.l instructions are
provided as a_ll and a_sc, allowing the new shared atomic.h to
generate efficient inline versions of all the basic atomic operations
without needing a cas loop.
|
|
rather than having each arch provide its own atomic.h, there is a new
shared atomic.h in src/internal which pulls arch-specific definitions
from arc/$(ARCH)/atomic_arch.h. the latter can be extremely minimal,
defining only a_cas or new ll/sc type primitives which the shared
atomic.h will use to construct everything else.
this commit avoids making heavy changes to the individual archs'
atomic implementations. definitions which are identical or
near-identical to what the new shared atomic.h would produce have been
removed, but otherwise the changes made are just hooking up the
arch-specific files to the new infrastructure. major changes to take
advantage of the new system will come in subsequent commits.
|
|
commit 2f853dd6b9a95d5b13ee8f9df762125e0588df5d failed to replicate
the old makefile logic that caused arch/arm/src/arm/atomics.s to be
built. since this was the only .s file under arch/*/src, rather than
trying to reproduce the old logic, I'm just moving it up a level and
adjusting the glob pattern in the makefile to catch it. eventually
arch/*/src will probably be removed in favor of moving all these files
to appropriate src/*/$(ARCH) locations.
|
|
the __SOFTFP__ macro which was wrongly being used does not reflect the
ABI (arm vs armhf) but just the availability of floating point
instructions/registers, so -mfloat-abi=softfp was wrongly being
treated as armhf. __ARM_PCS_VFP is the correct predefined macro to
check for the armhf EABI variant. this macro usage was corrected for
the build process in commit 4918c2bb206bfaaf5a1f7d3448c2f63d5e2b7d56
but reloc.h was apparently overlooked at the time.
|
|
apparently the .gpword directive does not work reliably with local
text labels; values produced were offset by 64k from the correct
value, resulting in incorrect computation of the got pointer at
runtime. instead, use an external label so that the assembler does not
munge the relocation; the linker will then get it right.
commit 6fef8cafbd0f6f185897bc87feb1ff66e2e204e1 exposed this issue by
removing the old, non-PIE-compatible handwritten crt1.s, which was not
affected. presumably mips PIE executables (using Scrt1.o produced from
crt_arch.h) were already affected at the time.
|
|
at least gcc 4.7 claims c++11 support but does not accept the alignas
keyword, causing breakage when stddef.h is included in c++11 mode.
instead, prefer using __attribute__((__aligned__)) on any compiler
with GNU extensions, and only use the alignas keyword as a fallback
for other C++ compilers.
C code should not be affected by this patch.
|
|
commit 8a8fdf6398b85c99dffb237e47fa577e2ddc9e77 was intended to remove
all such usage, but these arch-specific files were overlooked, leading
to inconsistent declarations and definitions.
|
|
on linux/nommu, non-writable private mappings of files may actually
use memory shared with other processes or the fs cache. the old nommu
loader code (used when mmap with MAP_FIXED fails) simply wrote over
top of the original file mapping, possibly clobbering this shared
memory. no such breakage was observed in practice, but it should have
been possible.
the new code starts by mapping anonymous writable memory on archs that
might support nommu, then maps load segments over top of it, falling
back to read if MAP_FIXED fails. we use an anonymous map rather than a
writable file map to avoid reading more data from disk than needed.
since pages cannot be loaded lazily on fault, in case of large
data/bss, mapping the full file may read a lot of data that will
subsequently be thrown away when processing additional LOAD segments.
as a result, we cannot skip the first LOAD segment when operating in
this mode.
these changes affect only non-FDPIC nommu support.
|
|
these files are all accepted as legacy arm syntax when producing arm
code, but legacy syntax cannot be used for producing thumb2 with
access to the full ISA. even after switching to UAL, some asm source
files contain instructions which are not valid in thumb mode, so these
will need to be addressed separately.
|
|
the idea of the three-instruction sequence being removed was to be
able to return to thumb code when used on armv4t+ from a thumb caller,
but also to be able to run on armv4 without the bx instruction
available (in which case the low bit of lr would always be 0).
however, without compiler support for generating such a sequence from
C code, which does not exist and which there is unlikely to be
interest in implementing, there is little point in having it in the
asm, and it would likely be easier to add pre-armv4t support via
enhanced linker handling of R_ARM_V4BX than at the compiler level.
removing this code simplifies adding support for building libc in
thumb2-only form (for cortex-m).
|
|
this assumption is borderline-unsafe to begin with, and fails badly
with -ffunction-sections since the linker can move the callee
arbitrarily far away when it lies in a different section.
|
|
using the actual mcontext_t definition rather than an overlaid pointer
array both improves correctness/readability and eliminates some ugly
hacks for archs with 64-bit registers bit 32-bit program counter.
also fix UB due to comparison of pointers not in a common array
object.
|
|
other archs use asm for the thread pointer load, so making that asm
volatile is sufficient to inform the compiler that it has a "side
effect" (crashing or giving the wrong result if the thread pointer was
not yet initialized) that prevents reordering. however, powerpc and
or1k have dedicated general purpose registers for the thread pointer
and did not need to use any asm to access it; instead, "local register
variables with a specified register" were used. however, there is no
specification for ordering constraints on this type of usage, and
presumably use of the thread pointer could be reordered across its
initialization.
to impose an ordering, I have added empty volatile asm blocks that
produce the "local register variable with a specified register" as
an output constraint.
|
|
this builds on commits a603a75a72bb469c6be4963ed1b55fabe675fe15 and
0ba35d69c0e77b225ec640d2bd112ff6d9d3b2af to ensure that a compiler
cannot conclude that it's valid to reorder the asm to a point before
the thread pointer is set up, or to treat the inline function as if it
were declared with attribute((const)).
other archs already use volatile asm for thread pointer loading.
|
|
|
|
commit a603a75a72bb469c6be4963ed1b55fabe675fe15 did this for the
public pthread_self function but not the internal inline one.
|
|
the restorer function pointer provided in the kernel sigaction
structure is interpreted by the kernel as a raw code address, not a
function descriptor.
this commit moves the declarations of the __restore and __restore_rt
symbols to ksigaction.h so that arch versions of the file can override
them, and introduces a version for sh which declares them as objects
rather than functions.
an alternate solution would have been defining SA_RESTORER to 0 so
that the functions are not used, but this both requires executable
stack (since the sh kernel does not have a vdso page with permanent
restorer functions) and crashes on qemu user-level emulation.
|
|
the entry point code supports being loaded by a loader which is not
fdpic-aware (in practice, either kernel with mmu or qemu without fdpic
support). this mostly just works, but signal handling will wrongly use
a function descriptor address as a code address if the personality is
not adjusted to fdpic.
ideally this code could be placed with sigaction so that it's not
needed except if/when a signal handler is installed. however,
personality is incorrectly maintained per-thread by the kernel, rather
than per-process, so it's necessary to correct the personality before
any threads are started. also, in order to skip the personality
syscall when an fdpic-aware loader is used, we need to be able to
detect how the program was loaded, and this information is only
readily available at the entry point.
|
|
previously, the normal ELF library loading code was used even for
fdpic, so only the kernel-loaded dynamic linker and main app could
benefit from separate placement of segments and shared text.
|
|
the __fdpic_fixup code is not needed for ET_DYN executables, which
instead use reloctions, so we can omit it from the dynamic linker and
static-pie entry point and save some code size.
|
|
the C implementation of __unmapself used for potentially-nommu sh
assumed CRTJMP takes a function descriptor rather than a code address;
however, the actual dynamic linker needs a code address, and so commit
7a9669e977e5f750cf72ccbd2614f8b72ce02c4c changed the definition of the
macro in reloc.h. this commit puts the old macro back in a place where
it only affects __unmapself.
this is an ugly workaround and should be cleaned up at some point, but
at least it's well isolated.
|
|
at this point not all functionality is complete. the dynamic linker
itself, and main app if it is also loaded by the kernel, take
advantage of fdpic and do not need constant displacement between
segments, but additional libraries loaded by the dynamic linker follow
normal ELF semantics for mapping still. this fully works, but does not
admit shared text on nommu.
in terms of actual functional correctness, dlsym's results are
presently incorrect for function symbols, RTLD_NEXT fails to identify
the caller correctly, and dladdr fails almost entirely.
with the dynamic linker entry point working, support for static pie is
automatically included, but linking the main application as ET_DYN
(pie) probably does not make sense for fdpic anyway. ET_EXEC is
equally relocatable but more efficient at representing relocations.
|
|
|
|
|
|
|