Age | Commit message (Collapse) | Author | Files | Lines |
|
as far as I can tell, microblaze is strongly ordered, but this does
not seem to be well-documented and the assumption may need revisiting.
even with strong ordering, however, a volatile C assignment is not
sufficient to implement atomic store, since it does not preclude
reordering by the compiler with respect to non-volatile stores and
loads.
simply flanking a C store with empty volatile asm blocks with memory
clobbers would achieve the desired result, but is likely to result in
worse code generation, since the address and value for the store may
need to be spilled. actually writing the store in asm, so that there's
only one asm block, should give optimal code generation while
satisfying the requirement for having a compiler barrier.
|
|
|
|
previously I had wrongly assumed the ll/sc instructions also provided
memory synchronization; apparently they do not. this commit adds sync
instructions before and after each atomic operation and changes the
atomic store to simply use sync before and after a plain store, rather
than a useless compare-and-swap.
|
|
despite lacking the semantic content that the asm accesses the
pointed-to object rather than just using its address as a value, the
mips asm was not actually broken. the asm blocks were declared
volatile, meaning that the compiler must treat them as having unknown
side effects.
however changing the asm to use memory constraints is desirable not
just from a semantic correctness and consistency standpoint, but also
produces better code. the compiler is able to use base/offset
addressing expressions for the atomic object's address rather than
having to load the address into a single register. this improves
access to global locks in static libc, and access to non-zero-offset
atomic fields in synchronization primitives, etc.
|
|
due to a mistake in my testing procedure, the changes in the previous
commit were not correctly tested and wrongly assumed to be valid. the
lwarx and stwcx. instructions do not accept general ppc memory address
expressions and thus the argument associated with the memory
constraint cannot be used directly.
instead, the memory constraint can be left as an argument that the asm
does not actually use, and the address can be provided in a separate
register constraint.
|
|
|
|
the register constraint for the address to be accessed did not convey
that the asm can access the pointed-to object. as far as the compiler
could tell, the result of the asm was just a pure function of the
address and the values passed in, and thus the asm could be hoisted
out of loops or omitted entirely if the result was not used.
|
|
the erroneous definition was missed because with works with qemu
user-level emulation, which also has the wrong definition. the actual
kernel uses the asm-generic generic definition.
|
|
With the exception of a fenv implementation, the port is fully featured.
The port has been tested in or1ksim, the golden reference functional
simulator for OpenRISC 1000.
It passes all libc-test tests (except the math tests that
requires a fenv implementation).
The port assumes an or1k implementation that has support for
atomic instructions (l.lwa/l.swa).
Although it passes all the libc-test tests, the port is still
in an experimental state, and has yet experienced very little
'real-world' use.
|
|
this issue caused the address of functions in shared libraries to
resolve to their PLT thunks in the main program rather than their
correct addresses. it was observed causing crashes, though the
mechanism of the crash was not thoroughly investigated. since the
issue is very subtle, it calls for some explanation:
on all well-behaved archs, GOT entries that belong to the PLT use a
special relocation type, typically called JMP_SLOT, so that the
dynamic linker can avoid having the jump destinations for the PLT
resolve to PLT thunks themselves (they also provide a definition for
the symbol, which must be used whenever the address of the function is
taken so that all DSOs see the same address).
however, the traditional mips PIC ABI lacked such a JMP_SLOT
relocation type, presumably because, due to the way PIC works, the
address of the PLT thunk was never needed and could always be ignored.
prior to commit adf94c19666e687a728bbf398f9a88ea4ea19996, the mips
version of reloc.h contained a hack that caused all symbol lookups to
be treated like JMP_SLOT, inhibiting undefined symbols from ever being
used to resolve symbolic relocations. this hack goes all the way back
to commit babf820180368f00742ec65b2050a82380d7c542, when the mips
dynamic linker was first made usable.
during the recent refactoring to eliminate arch-specific relocation
processing (commit adf94c19666e687a728bbf398f9a88ea4ea19996), this
hack was overlooked and no equivalent functionality was provided in
the new code.
fixing the problem is not as simple as adding back an equivalent hack,
since there is now also a "non-PIC ABI" that can be used for the main
executable, which actually does use a PLT. the closest thing to
official documentation I could find for this ABI is nonpic.txt,
attached to Message-ID: 20080701202236.GA1534@caradoc.them.org, which
can be found in the gcc mailing list archives and elsewhere. per this
document, undefined symbols corresponding to PLT thunks have the
STO_MIPS_PLT bit set in the symbol's st_other field. thus, I have
added an arch-specific rule for mips, applied at the find_sym level
rather than the relocation level, to reject undefined symbols with the
STO_MIPS_PLT bit clear.
the previous hack of treating all mips relocations as JMP_SLOT-like,
rather than rejecting the unwanted symbols in find_sym, probably also
caused dlsym to wrongly return PLT thunks in place of the correct
address of a function under at least some conditions. this should now
be fixed, at least for global-scope symbol lookups.
|
|
|
|
|
|
this was one of the main instances of ugly code duplication: all archs
use basically the same types of relocations, but roughly equivalent
logic was duplicated for each arch to account for the different naming
and numbering of relocation types and variation in whether REL or RELA
records are used.
as an added bonus, both REL and RELA are now supported on all archs,
regardless of which is used by the standard toolchain.
|
|
processing of R_PPC_TPREL32 was ignoring the addend provided by the
RELA-style relocation and instead using the inline value as the
addend. this presumably broke dynamic-linked access to initial TLS in
cases where the addend was nonzero.
|
|
the following issues are fixed:
- R_SH_REL32 was adding the load address of the module being relocated
to the result. this seems to have been a mistake in the original
port, since it does not match other dynamic linker implementations
and since adding a difference between two addresses (the symbol
value and the relocation address) to a load address does not make
sense.
- R_SH_TLS_DTPMOD32 was wrongly accepting an inline addend (i.e. using
+= rather than = on *reloc_addr) which makes no sense; addition is
not an operation that's defined on module ids.
- R_SH_TLS_DTPOFF32 and R_SH_TLS_TPOFF32 were wrongly using inline
addends rather than the RELA-provided addends.
in addition, handling of R_SH_GLOB_DAT, R_SH_JMP_SLOT, and R_SH_DIR32
are merged to all honor the addend. the first two should not need it
for correct usage generated by toolchains, but other dynamic linkers
allow addends here, and it simplifies the code anyway.
these issues were spotted while reviewing the code for the purpose of
refactoring this part of the dynamic linker. no testing was performed.
|
|
the immediate motivation is supporting TLSDESC relocations which
require allocation and thus may fail (unless we pre-allocate), but
this mechanism should also be used for throwing an error on
unsupported or invalid relocation types, and perhaps in certain cases,
for reporting when a relocation is not satisfiable.
|
|
|
|
linux 3.14 introduced sched_getattr and sched_setattr syscalls in
commit d50dde5a10f305253cbc3855307f608f8a3c5f73
and the related SCHED_DEADLINE scheduling policy in
commit aab03e05e8f7e26f51dee792beddcb5cca9215a5
but struct sched_attr "extended scheduling parameters data structure"
is not yet exported to userspace (necessary for using the syscalls)
so related uapi definitions are not added yet.
|
|
On 32 bit mips the kernel uses -1UL/2 to mark RLIM_INFINITY (and
this is the definition in the userspace api), but since it is in
the middle of the valid range of limits and limits are often
compared with relational operators, various kernel side logic is
broken if larger than -1UL/2 limits are used. So we truncate the
limits to -1UL/2 in get/setrlimit and prlimit.
Even if the kernel side logic consistently treated -1UL/2 as greater
than any other limit value, there wouldn't be any clean workaround
that allowed using large limits:
* using -1UL/2 as RLIM_INFINITY in userspace would mean different
infinity value for get/setrlimt and prlimit (where infinity is always
-1ULL) and userspace logic could break easily (just like the kernel
is broken now) and more special case code would be needed for mips.
* translating -1UL/2 kernel side value to -1ULL in userspace would
mean that -1UL/2 limit cannot be set (eg. -1UL/2+1 had to be passed
to the kernel instead).
|
|
armv7/thumb2 provides a way to do atomics in thumb mode, but for armv6
we need a call to arm mode.
this commit is based on a patch by Stephen Thomas which fixed the
armv7 cases but not the armv6 ones.
all of this should be revisited if/when runtime selection of thread
pointer access and atomics are added.
|
|
|
|
|
|
the vdso symbol lookup code is based on the original 2011 patch by
Nicholas J. Kain, with some streamlining, pointer arithmetic fixes,
and one symbol version matching fix.
on the consumer side (clock_gettime), per-arch macros for the
particular symbol name and version to lookup are added in
syscall_arch.h, and no vdso code is pulled in on archs which do not
define these macros. at this time, vdso is enabled only on x86_64.
the vdso support at the dynamic linker level is no longer useful to
libc, but is left in place for the sake of debuggers (which may need
the vdso in the link map to find its functions) and possibly use with
dlsym.
|
|
The mips arch is special in that it uses different RLIMIT_
numbers than other archs, so allow bits/resource.h to override
the default RLIMIT_ numbers (empty on all archs except mips).
Reported by orc.
|
|
it will be needed to implement some things in sysconf, and the syscall
can't easily be used directly because the x32 syscall uses the wrong
structure layout. the l (uncreative, for "linux") prefix is used since
the symbol name __sysinfo is already taken for AT_SYSINFO from the aux
vector.
the way the x32 override of this function works is also changed to be
simpler and avoid the useless jump instruction.
|
|
aside from potentially offering better performance, this change is
needed since the old coprocessor-based approach to barriers is
deprecated in arm v7, and some compilers/assemblers issue errors when
using the deprecated instruction for v7 targets.
|
|
the "m" constraint could give a memory reference with an offset that's
not compatible with ldrex/strex, so the arm-specific "Q" constraint is
needed instead.
|
|
this is perhaps not the optimal implementation; a_cas still compiles
to nested loops due to the different interface contracts of the kuser
helper cas function (whose contract this patch implements) and the
a_cas function (whose contract mimics the x86 cmpxchg). fixing this
may be possible, but it's more complicated and thus deferred until a
later time.
aside from improving performance and code size, this patch also
provides a means of producing binaries which can run on hardened
kernels where the kuser helpers have been disabled. however, at
present this requires producing binaries for armv6k or later, which
will not run on older cpus. a real solution to the problem of kernels
that omit the kuser helpers would be runtime detection, so that
universal binaries which run on all arm cpu models can also be
compatible with all kernel hardening profiles. robust detection
however is a much harder problem, and will be addressed at a later
time.
|
|
the kernel entry point for syscalls on microblaze nominally saves and
restores all registers, and testing on qemu always worked since qemu
behaves this way too. however, the real kernel treats r3:r4 as a
potential 64-bit return value from the syscall function, and copies
both over top of the saved registers before returning to userspace.
thus, we need to treat r4 as always-clobbered.
|
|
in the previous changes, I missed the fact that both the prototype of
the sigaltstack function and the definition of ucontext_t depend on
stack_t.
|
|
like almost everything on mips, this is gratuitously different.
|
|
it's different at least on mips. mips version will be fixed in a
separate commit to show the change.
|
|
|
|
the excess space was unused and unintentional. this change does not
affect the ABI between applications and libc. while it does
theoretically affect linkage between third-party translation units
using jmp_buf as part of a structure, we've already changed jmp_buf at
least once on all archs, and problems were never observed, likely
because such usage would be very unusual. in any case it's best to get
things right now rather than making changes sometime during the 1.0.x
series or later.
|
|
this seems to have been copied erroneously from the arm version of the
file. it's fairly harmless but it's a mistake and better to fix now
than later.
|
|
the omission of the padding was uncovered by the latest regression
statvfs regression test added to libc-test.
|
|
Applications ended up with copy relocations for this array, which
resulted in libc's references to this array pointing to the
application's copy. The dynamic linker, however, can require this array
before the application is relocated, and therefore before the
application's copy of this array is initialized. This resulted in
garbage being loaded into FPSCR before executing main, which violated
the ABI.
We fix this by putting the array in crt1 and making the libc copy
private. This prevents libc's reference to the array from pointing to
an uninitialized copy in the application.
|
|
The mips statfs struct layout is different than on other archs, so the
statfs, fstatfs, statvfs and fstatvfs APIs were broken on mips.
Now the ordering is fixed, the types are kept consistent with other archs.
|
|
This used to be broken when all archs had the same semid_ds definition:
there is no padding around the time_t members on mips.
|
|
these were incorrectly copied from the kernel, whose ABI matches the
POSIX requirements but with the wrong underlying types and wrong
signedness.
|
|
these have been wrong for a long time and were never detected or
corrected. powerpc needs some gratuitous extra padding/reserved slots
in ipc_perm, big-endian ordering for the padding of time_t slots that
was intended by the kernel folks to allow a transition to 64-bit
time_t, and some minor gratuitous reordering of struct members.
|
|
the definition was found to be incorrect at least for powerpc, and
fixing this cleanly requires making the definition arch-specific. this
will allow cleaning up the definition for other archs to make it more
specific, and reversing some of the ugliness (time_t hacks) introduced
with the x32 port.
this first commit simply copies the existing definition to each arch
without any changes. this is intentional, to make it easier to review
changes made on a per-arch basis.
|
|
this seems to have been overlooked, and resulted in breakage in
anything including sys/user.h.
|
|
the kernel uses long longs in the struct, but the documentation
says they're long. so we need to fixup the mismatch between the
userspace and kernelspace structs.
since the struct offers a mem_unit member, we can avoid truncation
by adjusting that value.
|
|
|
|
default endianness for sh on linux is little, and while conventions
vary, "eb" seems to be the most widely used suffix for big endian.
|
|
linux, gcc, etc. all use "sh" as the name for the superh arch. there
was already some inconsistency internally in musl: the dynamic linker
was searching for "ld-musl-sh.path" as its path file despite its own
name being "ld-musl-superh.so.1". there was some sentiment in both
directions as to how to resolve the inconsistency, but overall "sh"
was favored.
|
|
Userspace emulated floating-point (gcc -msoft-float) is not compatible
with the default mips abi (assumes an FPU or in kernel emulation of it).
Soft vs hard float abi should not be mixed, __mips_soft_float is checked
in musl's configure script and there is no runtime check. The -sf subarch
does not save/restore floating-point registers in setjmp/longjmp and only
provides dummy fenv implementation.
|
|
the reordering of headers caused some risc archs to not see
the __syscall declaration anymore.
this caused build errors on mips with any compiler,
and on arm and microblaze with clang.
we now declare it locally just like the powerpc port does.
|
|
previously it was wrongly using the x86_64 one, precluding having both
x32 and x86_64 libs present on the same system.
|