Age | Commit message (Collapse) | Author | Files | Lines |
|
some minor changes to how hard-coded sets for thread-related purposes
are handled were also needed, since the old object sizes were not
necessarily sufficient. things have gotten a bit ugly in this area,
and i think a cleanup is in order at some point, but for now the goal
is just to get the code working on all supported archs including mips,
which was badly broken by linux rejecting syscalls with the wrong
sigset_t size.
|
|
it's expected that this will be needed/useful only in asm, so I've
given it its own symbol that can be addressed in pc-relative ways from
asm rather than adding a field in the __libc structure which would
require hard-coding the offset wherever it's used.
|
|
these could have caused memory corruption due to invalid accesses to
the next field. all should be fixed now; I found the errors with fgrep
-r '__lock(&', which is bogus since the argument should be an array.
|
|
|
|
basically, this version of the code was obtained by starting with
rdp's work from his ellcc source tree, adapting it to musl's build
system and coding style, auditing the bits headers for discrepencies
with kernel definitions or glibc/LSB ABI or large file issues, fixing
up incompatibility with the old binutils from aboriginal linux, and
adding some new special cases to deal with the oddities of sigaction
and pipe syscall interfaces on mips.
at present, minimal test programs work, but some interfaces are broken
or missing. threaded programs probably will not link.
|
|
the type doesn't actually matter, just the size, but it's nice to be
consistent...
|
|
this file can be overridden by a same-named file in an arch dir.
|
|
there is no need/use for a flush hook. the write function serves this
purpose already. i originally created the hook for implementing mem
streams based on a mistaken reading of posix, and later realized it
wasn't useful but never removed it until now.
|
|
i originally omitted these (optional, per POSIX) interfaces because i
considered them backwards implementation details. however, someone
later brought to my attention a fairly legitimate use case: allocating
thread stacks in memory that's setup for sharing and/or fast transfer
between CPU and GPU so that the thread can move data to a GPU directly
from automatic-storage buffers without having to go through additional
buffer copies.
perhaps there are other situations in which these interfaces are
useful too.
|
|
|
|
I've been looking for data that would suggest a good default, and
since little has shown up, i'm doing this based on the limited data I
have. the value 80k is chosen to accommodate 64k of application data
(which happens to be the size of the buffer in git that made it crash
without a patch to call pthread_attr_setstacksize) plus the max stack
usage of most libc functions (with a few exceptions like crypt, which
will be fixed soon to avoid excessive stack usage, and [n]ftw, which
inherently uses a fair bit in recursive directory searching).
if further evidence emerges suggesting that the default should be
larger, I'll consider changing it again, but I'd like to avoid it
getting too large to avoid the issues of large commit charge and rapid
address space exhaustion on 32-bit machines.
|
|
these will NOT be used when compiling with -D_LARGEFILE64_SOURCE on
musl; instead, they exist in the hopes of eventually being able to run
some glibc-linked apps with musl sitting in place of glibc.
also remove the (apparently incorrect) fcntl alias.
|
|
|
|
i made a best attempt, but the intended semantics of this function are
fundamentally contradictory. there is no consistent way to handle
ownership of locks when forking a multi-threaded process. the code
could have worked by accident for programs that only used normal
mutexes and nothing else (since they don't actually store or care
about their owner), but that's about it. broken-by-design interfaces
that aren't even in glibc (only solaris) don't belong in musl.
|
|
it's ok to overlap with integer slot 3 on 32-bit because only slots
0-2 are used on process-local barriers.
|
|
updated nextafter* to use FORCE_EVAL, it can be used in many other
places in the math code to improve readability.
|
|
pthread structure has been adjusted to match the glibc/GCC abi for
where the canary is stored on i386 and x86_64. it will need variants
for other archs to provide the added security of the canary's entropy,
but even without that it still works as well as the old "minimal" ssp
support. eventually such changes will be made anyway, since they are
also needed for GCC/C11 thread-local storage support (not yet
implemented).
care is taken not to attempt initializing the thread pointer unless
the program actually uses SSP (by reference to __stack_chk_fail).
|
|
this caused misreading of certain floating point values that are exact
multiples of large powers of ten, unpredictable depending on prior
stack contents.
|
|
i did some testing trying to switch malloc to use the new internal
lock with priority inheritance, and my malloc contention test got
20-100 times slower. if priority inheritance futexes are this slow,
it's simply too high a price to pay for avoiding priority inversion.
maybe we can consider them somewhere down the road once the kernel
folks get their act together on this (and perferably don't link it to
glibc's inefficient lock API)...
as such, i've switch __lock to use malloc's implementation of
lightweight locks, and updated all the users of the code to use an
array with a waiter count for their locks. this should give optimal
performance in the vast majority of cases, and it's simple.
malloc is still using its own internal copy of the lock code because
it seems to yield measurably better performance with -O3 when it's
inlined (20% or more difference in the contention stress test).
|
|
we use priority inheritance futexes if possible so that the library
cannot hit internal priority inversion deadlocks in the presence of
realtime priority scheduling (full support to be added later).
|
|
also be extra careful to avoid wrapping the circular buffer early
|
|
care is taken that the setting of errno correctly reflects underflow
condition. scanning exact denormal values does not result in ERANGE,
nor does scanning values (such as the usual string definition of
FLT_MIN) which are actually less than the smallest normal number but
which round to a normal result.
only the decimal case is handled so far; hex float require a separate
fix to come later.
|
|
in principle this should just be an optimization, but it happens to
also fix a nasty bug where values like 0.00000000001 were getting
caught by the early zero detection path and wrongly scanned as zero.
|
|
bug detected by glib test suite
|
|
|
|
this was basically harmless, but could have resulted in misreading
inputs with more than a few gigabytes worth of digits..
|
|
this code worked in strtod, but not in scanf. more evidence that i
should design a better interface for discarding multiple tail
characters than just calling unget repeatedly...
|
|
|
|
|
|
advantages over the old code:
- correct results for floating point (old code was bogus)
- wide/regular scanf separated so scanf does not pull in wide code
- well-defined behavior on integers that overflow dest type
- support for %[a-b] ranges with %[ (impl-defined by widely used)
- no intermediate conversion of fmt string to wide string
- cleaner, easier to share code with strto* functions
- better standards conformance for corner cases
the old code remains in the source tree, as the wide versions of the
scanf-family functions are still using it. it will be removed when no
longer needed.
|
|
this is needed for upcoming new scanf
|
|
|
|
this off-by-one error was causing values with just one digit past the
decimal point to be treated by the integer case. in many cases it
would yield the correct result, but if expressions are evaluated in
excess precision, double rounding may occur.
|
|
this increases code size slightly, but it's considerably faster,
especially for power-of-2 bases.
|
|
at -Os optimization level, gcc refuses to inline these functions even
though the inlined code would roughly the same size as the function
call, and much faster. the easy solution is to make them into macros.
|
|
whenever the base was small enough that more than one digit could
still fit after UINTMAX_MAX/36-1 was reached, only the first would be
allowed; subsequent digits would trigger spurious overflow, making it
impossible to read the largest values in low bases.
|
|
|
|
|
|
|
|
|
|
when upscaling, even the very last digit is needed in cases where the
input is exact; no digits can be discarded. but when downscaling, any
digits less significant than the mantissa bits are destined for the
great bitbucket; the only influence they can have is their presence
(being nonzero). thus, we simply throw them away early. the result is
nearly a 4x performance improvement for processing huge values.
the particular threshold LD_B1B_DIG+3 is not chosen sharply; it's
simply a "safe" distance past the significant bits. it would be nice
to replace it with a sharp bound, but i suspect performance will be
comparable (within a few percent) anyway.
|
|
now that this is the first operation, it can rely on the circular
buffer contents not being wrapped when it begins. we limit the number
of digits read slightly in the initial parsing loops too so that this
code does not have to consider the case where it might cause the
circular buffer to wrap; this is perfectly fine because KMAX is chosen
as a power of two for circular-buffer purposes and is much larger than
it otherwise needs to be, anyway.
these changes should not affect performance at all.
|
|
upscaling by even one step too much creates 3-29 extra iterations for
the next loop. this is still suboptimal since it always goes by 2^29
rather than using a smaller upscale factor when nearing the target,
but performance on common, small-magnitude, few-digit values has
already more than doubled with this change.
more optimizations on the way...
|
|
|
|
|
|
for example, "1000000000" was being read as "1" due to this loop
exiting early. it's necessary to actually update z and zero the
entries so that the subsequent rounding code does not get confused;
before i did that, spurious inexact exceptions were being raised.
|
|
note that there's no need for a precise cutoff, because exponents this
large will always result in overflow or underflow (it's impossible to
read enough digits to compensate for the exponent magnitude; even at a
few nanoseconds per digit it would take hundreds of years).
|
|
|
|
the immediate benefit is a significant debloating of the float parsing
code by moving the responsibility for keeping track of the number of
characters read to a different module.
by linking shgetc with the stdio buffer logic, counting logic is
defered to buffer refill time, keeping the calls to shgetc fast and
light.
in the future, shgetc will also be useful for integrating the new
float code with scanf, which needs to not only count the characters
consumed, but also limit the number of characters read based on field
width specifiers.
shgetc may also become a useful tool for simplifying the integer
parsing code.
|
|
this version is intended to be fully conformant to the ISO C, POSIX,
and IEEE standards for conversion of decimal/hex floating point
strings to float, double, and long double (ld64 or ld80 only at
present) values. in particular, all results are intended to be rounded
correctly according to the current rounding mode. further, this
implementation aims to set the floating point underflow, overflow, and
inexact flags to reflect the conversion performed.
a moderate amount of testing has been performed (by nsz and myself)
prior to integration of the code in musl, but it still may have bugs.
so far, only strto(d|ld|f) use the new code. scanf integration will be
done as a separate commit, and i will add implementations of the wide
character functions later.
|