Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
|
|
when upscaling, even the very last digit is needed in cases where the
input is exact; no digits can be discarded. but when downscaling, any
digits less significant than the mantissa bits are destined for the
great bitbucket; the only influence they can have is their presence
(being nonzero). thus, we simply throw them away early. the result is
nearly a 4x performance improvement for processing huge values.
the particular threshold LD_B1B_DIG+3 is not chosen sharply; it's
simply a "safe" distance past the significant bits. it would be nice
to replace it with a sharp bound, but i suspect performance will be
comparable (within a few percent) anyway.
|
|
now that this is the first operation, it can rely on the circular
buffer contents not being wrapped when it begins. we limit the number
of digits read slightly in the initial parsing loops too so that this
code does not have to consider the case where it might cause the
circular buffer to wrap; this is perfectly fine because KMAX is chosen
as a power of two for circular-buffer purposes and is much larger than
it otherwise needs to be, anyway.
these changes should not affect performance at all.
|
|
upscaling by even one step too much creates 3-29 extra iterations for
the next loop. this is still suboptimal since it always goes by 2^29
rather than using a smaller upscale factor when nearing the target,
but performance on common, small-magnitude, few-digit values has
already more than doubled with this change.
more optimizations on the way...
|
|
|
|
|
|
for example, "1000000000" was being read as "1" due to this loop
exiting early. it's necessary to actually update z and zero the
entries so that the subsequent rounding code does not get confused;
before i did that, spurious inexact exceptions were being raised.
|
|
note that there's no need for a precise cutoff, because exponents this
large will always result in overflow or underflow (it's impossible to
read enough digits to compensate for the exponent magnitude; even at a
few nanoseconds per digit it would take hundreds of years).
|
|
|
|
the immediate benefit is a significant debloating of the float parsing
code by moving the responsibility for keeping track of the number of
characters read to a different module.
by linking shgetc with the stdio buffer logic, counting logic is
defered to buffer refill time, keeping the calls to shgetc fast and
light.
in the future, shgetc will also be useful for integrating the new
float code with scanf, which needs to not only count the characters
consumed, but also limit the number of characters read based on field
width specifiers.
shgetc may also become a useful tool for simplifying the integer
parsing code.
|
|
this version is intended to be fully conformant to the ISO C, POSIX,
and IEEE standards for conversion of decimal/hex floating point
strings to float, double, and long double (ld64 or ld80 only at
present) values. in particular, all results are intended to be rounded
correctly according to the current rounding mode. further, this
implementation aims to set the floating point underflow, overflow, and
inexact flags to reflect the conversion performed.
a moderate amount of testing has been performed (by nsz and myself)
prior to integration of the code in musl, but it still may have bugs.
so far, only strto(d|ld|f) use the new code. scanf integration will be
done as a separate commit, and i will add implementations of the wide
character functions later.
|
|
|
|
|
|
|
|
standard functions cannot depend on nonstandard symbols
|
|
thanks to the hard work of Szabolcs Nagy (nsz), identifying the best
(from correctness and license standpoint) implementations from freebsd
and openbsd and cleaning them up! musl should now fully support c99
float and long double math functions, and has near-complete complex
math support. tgmath should also work (fully on gcc-compatible
compilers, and mostly on any c99 compiler).
based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from
nsz's libm git repo, with some additions (dummy versions of a few
missing long double complex functions, etc.) by me.
various cleanups still need to be made, including re-adding (if
they're correct) some asm functions that were dropped.
|
|
|
|
since gcc is failing to generate the necessary ".hidden" directive in
the output asm, generate it explicitly with an __asm__ statement...
|
|
this was a failed attempt at working around the gcc 3 visibility bug
affecting x86_64. subsequent patch will address it with an ugly but
working hack.
|
|
in gcc 3, the visibility attribute must be placed on both the
declaration and on the definition. if it's omitted from the
definition, the compiler fails to emit the ".hidden" directive in the
assembly, and the linker will either generate textrels (if supported,
such as on i386) or refuse to link (on targets where certain types of
textrels are forbidden or impossible without further assumptions about
memory layout, such as on x86_64).
this patch also unifies the decision about when to use visibility into
libc.h and makes the visibility in the utf-8 state machine tables
based on libc.h rather than a duplicate test.
|
|
|
|
eliminate the sequence number field and instead use the counter as the
futex because of the way the lock is held, sequence numbers are
completely useless, and this frees up a field in the barrier structure
to be used as a waiter count for the count futex, which lets us avoid
some syscalls in the best case.
as of now, self-synchronized destruction and unmapping should be fully
safe. before any thread can return from the barrier, all threads in
the barrier have obtained the vm lock, and each holds a shared lock on
the barrier. the barrier memory is not inspected after the shared lock
count reaches 0, nor after the vm lock is released.
|
|
this implementation is rather heavy-weight, but it's the first
solution i've found that's actually correct. all waiters actually wait
twice at the barrier so that they can synchronize exit, and they hold
a "vm lock" that prevents changes to virtual memory mappings (and
blocks pthread_barrier_destroy) until all waiters are finished
inspecting the barrier.
thus, it is safe for any thread to destroy and/or unmap the barrier's
memory as soon as pthread_barrier_wait returns, without further
synchronization.
|
|
due to moving waiters from the cond var to the mutex in bcast, these
waiters upon wakeup would steal slots in the count from newer waiters
that had not yet been signaled, preventing the signal function from
taking any action.
to solve the problem, we simply use two separate waiter counts, and so
that the original "total" waiters count is undisturbed by broadcast
and still available for signal.
|
|
the changes to syscall_ret are mostly no-ops in the generated code,
just cleanup of type issues and removal of some implementation-defined
behavior. the one exception is the change in the comparison value,
which is fixed so that 0xf...f000 (which in principle could be a valid
return value for mmap, although probably never in reality) is not
treated as an error return.
|
|
testing revealed that the old implementation, while correct, was
giving way too many spurious wakeups due to races changing the value
of the condition futex. in a test program with 5 threads receiving
broadcast signals, the number of returns from pthread_cond_wait was
roughly 3 times what it should have been (2 spurious wakeups for every
legitimate wakeup). moreover, the magnitude of this effect seems to
grow with the number of threads.
the old implementation may also have had some nasty race conditions
with reuse of the cond var with a new mutex.
the new implementation is based on incrementing a sequence number with
each signal event. this sequence number has nothing to do with the
number of threads intended to be woken; it's only used to provide a
value for the futex wait to avoid deadlock. in theory there is a
danger of race conditions due to the value wrapping around after 2^32
signals. it would be nice to eliminate that, if there's a way.
testing showed no spurious wakeups (though they are of course
possible) with the new implementation, as well as slightly improved
performance.
|
|
this avoids the "stampede effect" where pthread_cond_broadcast would
result in all waiters waking up simultaneously, only to immediately
contend for the mutex and go back to sleep.
|
|
it's amazing none of the conformance tests i've run even bothered to
check whether something so basic works...
|
|
this port assumes eabi calling conventions, eabi linux syscall
convention, and presence of the kernel helpers at 0xffff0f?0 needed
for threads support. otherwise it makes very few assumptions, and the
code should work even on armv4 without thumb support, as well as on
systems with thumb interworking. the bits headers declare this a
little endian system, but as far as i can tell the code should work
equally well on big endian.
some small details are probably broken; so far, testing has been
limited to qemu/aboriginal linux.
|
|
several things are changed. first, i have removed the old __uniclone
function signature and replaced it with the "standard" linux
__clone/clone signature. this was necessary to expose clone to
applications anyway, and it makes it easier to port __clone to new
archs, since it's now testable independently of pthread_create.
secondly, i have removed all references to the ugly ldt descriptor
structure (i386 only) from the c code and pthread structure. in places
where it is needed, it is now created on the stack just when it's
needed, in assembly code. thus, the i386 __clone function takes the
desired thread pointer as its argument, rather than an ldt descriptor
pointer, just like on all other sane archs. this should not affect
applications since there is really no way an application can use clone
with threads/tls in a way that doesn't horribly conflict with and
clobber the underlying implementation's use. applications are expected
to use clone only for creating actual processes, possibly with new
namespace features and whatnot.
|
|
this behavior (opening fds 0-2 for a suid program) is explicitly
allowed (but not required) by POSIX to protect badly-written suid
programs from clobbering files they later open.
this commit does add some cost in startup code, but the availability
of auxv and the security flag will be useful elsewhere in the future.
in particular auxv is needed for static-linked vdso support, which is
still waiting to be committed (sorry nik!)
|
|
fix up clone signature to match the actual behavior. the new
__syncall_wait function allows a __synccall callback to wait for other
threads to continue without returning, so that it can resume action
after the caller finishes. this interface could be made significantly
more general/powerful with minimal effort, but i'll wait to do that
until it's actually useful for something.
|
|
|
|
|
|
like mutexes and semaphores, rwlocks suffered from a race condition
where the unlock operation could access the lock memory after another
thread successfully obtained the lock (and possibly destroyed or
unmapped the object). this has been fixed in the same way it was fixed
for other lock types.
in addition, the previous implementation favored writers over readers.
in the absence of other considerations, that is the best behavior for
rwlocks, and posix explicitly allows it. however posix also requires
read locks to be recursive. if writers are favored, any attempt to
obtain a read lock while a writer is waiting for the lock will fail,
causing "recursive" read locks to deadlock. this can be avoided by
keeping track of which threads already hold read locks, but doing so
requires unbounded memory usage, and there must be a fallback case
that favors readers in case memory allocation failed. and all of this
must be synchronized. the cost, complexity, and risk of errors in
getting it right is too great, so we simply favor readers.
tracking of the owner of write locks has been removed, as it was not
useful for anything. it could allow deadlock detection, but it's not
clear to me that returning EDEADLK (which a buggy program is likely to
ignore) is better than deadlocking; at least the latter behavior
prevents further data corruption. a correct program cannot invoke this
situation anyway.
the reader count and write lock state, as well as the "last minute"
waiter flag have all been combined into a single atomic lock. this
means all state transitions for the lock are atomic compare-and-swap
operations. this makes establishing correctness much easier and may
improve performance.
finally, some code duplication has been cleaned up. more is called
for, especially the standard __timedwait idiom repeated in all locks.
|
|
new features:
- FUTEX_WAIT_BITSET op will be used for timed waits if available. this
saves a call to clock_gettime.
- error checking for the timespec struct is now inside __timedwait so
it doesn't need to be duplicated everywhere. cond_timedwait still
needs to duplicate it to avoid unlocking the mutex, though.
- pushing and popping the cancellation handler is delegated to
__timedwait, and cancellable/non-cancellable waits are unified.
|
|
previously, stdio used spinlocks, which would be unacceptable if we
ever add support for thread priorities, and which yielded
pathologically bad performance if an application attempted to use
flockfile on a key file as a major/primary locking mechanism.
i had held off on making this change for fear that it would hurt
performance in the non-threaded case, but actually support for
recursive locking had already inflicted that cost. by having the
internal locking functions store a flag indicating whether they need
to perform unlocking, rather than using the actual recursive lock
counter, i was able to combine the conditionals at unlock time,
eliminating any additional cost, and also avoid a nasty corner case
where a huge number of calls to ftrylockfile could cause deadlock
later at the point of internal locking.
this commit also fixes some issues with usage of pthread_self
conflicting with __attribute__((const)) which resulted in crashes with
some compiler versions/optimizations, mainly in flockfile prior to
pthread_create.
|
|
changing credentials in a multi-threaded program is extremely
difficult on linux because it requires synchronizing the change
between all threads, which have their own thread-local credentials on
the kernel side. this is further complicated by the fact that changing
the real uid can fail due to exceeding RLIMIT_NPROC, making it
possible that the syscall will succeed in some threads but fail in
others.
the old __rsyscall approach being replaced was robust in that it would
report failure if any one thread failed, but in this case, the program
would be left in an inconsistent state where individual threads might
have different uid. (this was not as bad as glibc, which would
sometimes even fail to report the failure entirely!)
the new approach being committed refuses to change real user id when
it cannot temporarily set the rlimit to infinity. this is completely
POSIX conformant since POSIX does not require an implementation to
allow real-user-id changes for non-privileged processes whatsoever.
still, setting the real uid can fail due to memory allocation in the
kernel, but this can only happen if there is not already a cached
object for the target user. thus, we forcibly serialize the syscalls
attempts, and fail the entire operation on the first failure. this
*should* lead to an all-or-nothing success/failure result, but it's
still fragile and highly dependent on kernel developers not breaking
things worse than they're already broken.
ideally linux will eventually add a CLONE_USERCRED flag that would
give POSIX conformant credential changes without any hacks from
userspace, and all of this code would become redundant and could be
removed ~10 years down the line when everyone has abandoned the old
broken kernels. i'm not holding my breath...
|
|
|
|
1. my interpretation of subject sequence definition was wrong. adjust
parser to conform to the standard.
2. some code for handling tail overflow case was missing (forgot to
finish writing it).
3. typo (= instead of ==) caused ERANGE to wrongly behave like EINVAL
|
|
this fixes a number of bugs in integer parsing due to lazy haphazard
wrapping, as well as some misinterpretations of the standard. the new
parser is able to work character-at-a-time or on whole strings, making
it easy to support the wide functions without unbounded space for
conversion. it will also be possible to update scanf to use the new
parser.
|
|
this seems to be necessary to make the linker accept the functions in
a shared library (perhaps to generate PLT entries?)
strictly speaking libc-internal asm should not need it. i might clean
that up later.
|
|
if thread id was reused by the kernel between the time pthread_kill
read it from the userspace pthread_t object and the time of the tgkill
syscall, a signal could be sent to the wrong thread. the tgkill
syscall was supposed to prevent this race (versus the old tkill
syscall) but it can't; it can only help in the case where the tid is
reused in a different process, but not when the tid is reused in the
same process.
the only solution i can see is an extra lock to prevent threads from
exiting while another thread is trying to pthread_kill them. it should
be very very cheap in the non-contended case.
|
|
|
|
these are useless and have caused problems for users trying to build
with non-gnu tools like tcc's assembler.
|
|
|
|
|
|
the new approach relies on the fact that the only ways to create
sigset_t objects without invoking UB are to use the sig*set()
functions, or from the masks returned by sigprocmask, sigaction, etc.
or in the ucontext_t argument to a signal handler. thus, as long as
sigfillset and sigaddset avoid adding the "protected" signals, there
is no way the application will ever obtain a sigset_t including these
bits, and thus no need to add the overhead of checking/clearing them
when sigprocmask or sigaction is called.
note that the old code actually *failed* to remove the bits from
sa_mask when sigaction was called.
the new implementations are also significantly smaller, simpler, and
faster due to ignoring the useless "GNU HURD signals" 65-1024, which
are not used and, if there's any sanity in the world, never will be
used.
|