Age | Commit message (Collapse) | Author | Files | Lines |
|
time64 syscall is used only if it's the only one defined for the arch,
or if the requested timeout does not fit in 32 bits. on current 32-bit
archs where time_t is a 32-bit type, this makes it statically
unreachable.
on 64-bit archs, there is no change to the code after preprocessing.
on current 32-bit archs, the time is passed via an intermediate copy
to remove the assumption that time_t is a 32-bit type.
to avoid duplicating SYS_ipc/SYS_semtimedop choice logic, the code for
32-bit archs "falls through" after updating the timeout argument ts to
point to a [compound literal] array of longs. in preparation for
"time64-only" 32-bit archs, an extra case is added for neither SYS_ipc
nor the non-time64 SYS_semtimedop existing; the ENOSYS failure path
here should never be reachable, and is added just in case a compiler
can't see that it's not reachable, to avoid spurious static analysis
complaints.
|
|
Linux v5.1 introduced ipc syscalls on targets where previously only
SYS_ipc was available, change the logic such that the ipc code keeps
using SYS_ipc which works backward compatibly on older kernels.
This changes behaviour on microblaze which had both mechanisms, now
SYS_ipc will be used instead of separate syscalls.
|
|
this should not matter since the reality is that either all the sysv
sem syscalls are individual syscalls, or all of them are multiplexed
on the SYS_ipc syscall (depending on arch). but best to be consistent
anyway.
|
|
this is a Linux-specific extension to the sysv semaphore api.
|