Age | Commit message (Collapse) | Author | Files | Lines |
|
old: 2*atan2(sqrt(1-x),sqrt(1+x))
new: atan2(fabs(sqrt((1-x)*(1+x))),x)
improvements:
* all edge cases are fixed (sign of zero in downward rounding)
* a bit faster (here a single call is about 131ns vs 162ns)
* a bit more precise (at most 1ulp error on 1M uniform random
samples in [0,1), the old formula gave some 2ulp errors as well)
|
|
|
|
|
|
this is a nonstandard function so it's not clear what conditions it
should satisfy. my intent is that it be fast and exact for positive
integral exponents when the result fits in the destination type, and
fast and correctly rounded for small negative integral exponents.
otherwise we aim for at most 1ulp error; it seems to differ from pow
by at most 1ulp and it's often 2-5 times faster than pow.
|
|
|
|
untested
|
|
use (1-x)*(1+x) instead of (1-x*x) in asin.s
the later can be inaccurate with upward rounding when x is close to 1
|
|
|
|
the int part was wrong when -1 < x <= -0 (+0.0 instead of -0.0)
and the size and performace gain of the asm version was negligible
|
|
cleaner implementation with unions and unsigned arithmetic
|
|
modfl(+-inf) was wrong on ld80 because the explicit msb
was not taken into account during inf vs nan check
|
|
previously a division was accidentally turned into integer div
(w = -i/NXT;) instead of long double div (w = -i; w /= NXT;)
|
|
|
|
It is probably not worth supporting gamma.
(it was already deprecated in 4.3BSD)
|
|
(fldl instruction was used instead of flds and fldt)
|
|
|
|
special care is made to avoid any inexact computations when either arg
is zero (in which case the exact absolute value of the other arg
should be returned) and to support the special condition that
hypot(±inf,nan) yields inf.
hypotl is not yet implemented since avoiding overflow is nontrivial.
|
|
|
|
(tgamma must be thread-safe, signgam is for lgamma* functions)
|
|
the old formula atan2(1,sqrt((1+x)/(1-x))) was faster but
could give nan result at x=1 when the rounding mode is
FE_DOWNWARD (so 1-1 == -0 and 2/-0 == -inf), the new formula
gives -0 at x=+-1 with downward rounding.
|
|
this has not been tested heavily, but it's known to at least assemble
and run in basic usage cases. it's nearly identical to the
corresponding i386 code, and thus expected to be just as correct or
just as incorrect.
|
|
old code saved/restored the fenv (the new code is only as slow
as that when inexact is not set before the call, but some other
flag is set and the rounding is inexact, which is rare)
before:
bench_nearbyint_exact 5000000 N 261 ns/op
bench_nearbyint_inexact_set 5000000 N 262 ns/op
bench_nearbyint_inexact_unset 5000000 N 261 ns/op
after:
bench_nearbyint_exact 10000000 N 94.99 ns/op
bench_nearbyint_inexact_set 25000000 N 65.81 ns/op
bench_nearbyint_inexact_unset 10000000 N 94.97 ns/op
|
|
|
|
fix comments about special cases
|
|
fix special cases, use multiplication instead of scalbnl
|
|
|
|
the fscale instruction is slow everywhere, probably because it
involves a costly and unnecessary integer truncation operation that
ends up being a no-op in common usages. instead, construct a floating
point scale value with integer arithmetic and simply multiply by it,
when possible.
for float and double, this is always possible by going to the
next-larger type. we use some cheap but effective saturating
arithmetic tricks to make sure even very large-magnitude exponents
fit. for long double, if the scaling exponent is too large to fit in
the exponent of a long double value, we simply fallback to the
expensive fscale method.
on atom cpu, these changes speed up scalbn by over 30%. (min rdtsc
timing dropped from 110 cycles to 70 cycles.)
|
|
this is a lot more efficient and also what is generally wanted.
perhaps the bit shuffling could be more efficient...
|
|
|
|
|
|
exponents (base 2) near 16383 were broken due to (1) wrong cutoff, and
(2) inability to fit the necessary range of scalings into a long
double value.
as a solution, we fall back to using frndint/fscale for insanely large
exponents, and also have to special-case infinities here to avoid
inf-inf generating nan.
thankfully the costly code never runs in normal usage cases.
|
|
zero, one, two, half are replaced by const literals
The policy was to use the f suffix for float consts (1.0f),
but don't use suffix for long double consts (these consts
can be exactly represented as double).
|
|
|
|
Underflow exception is only raised when the result is
invalid, but fmod is always exact. x87 has a denormalization
exception, but that's nonstandard. And the superflous *1.0
will be optimized away by any compiler that does not honor
signaling nans.
|
|
|
|
|
|
Some code assumed ldexp(x, 1) is faster than 2.0*x,
but ldexp is a wrapper around scalbn which uses
multiplications inside, so this optimization is
wrong.
This commit also fixes fmal which accidentally
used ldexp instead of ldexpl loosing precision.
There are various additional changes from the
work-in-progress const cleanups.
|
|
|
|
|
|
|
|
|
|
Some long double consts were stored in two doubles as a workaround
for x86_64 and i386 with the following comment:
/* Long double constants are slow on these arches, and broken on i386. */
This is most likely old gcc bug related to the default x87 fpu
precision setting (it's double instead of double extended on BSD).
|
|
|
|
|
|
|
|
this could perhaps use some additional testing for corner cases, but
it seems to be correct.
|
|
up to 30% faster exp2 by avoiding slow frndint and fscale functions.
expm1 also takes a much more direct path for small arguments (the
expected usage case).
|
|
|
|
|
|
|