Age | Commit message (Collapse) | Author | Files | Lines |
|
we already attempt to preclude this case by having res_send use a
sufficiently large temporary buffer even if the caller did not provide
one as large as or larger than the udp dns max of 512 bytes. however,
it's possible that the caller passed a custom-crafted query packet
using EDNS0, e.g. to get detailed DNSSEC results, with a larger udp
size allowance.
I have also seen claims that there are some broken nameservers in the
wild that do not honor the dns udp limit of 512 and send large answers
without the TC bit set, when the query was not using EDNS.
we generally don't aim to support broken nameservers, but in this case
both problems, if the latter is even real, have a common solution:
using recvmsg instead of recvfrom so we can examine the MSG_TRUNC
flag.
|
|
the size of 512 is not sufficient to get at least one address in the
worst case where the name is at or near max length and resolves to a
CNAME at or near max length. prior to tcp fallback, there was nothing
we could do about this case anyway, but now it's fixable.
the new limit 768 is chosen so as to admit roughly the number of
addresses with a worst-case CNAME as could fit for a worst-case name
that's not a CNAME in the old 512-byte limit. outside of this
worst-case, the number of addresses that might be obtained is
increased.
MAXADDRS (48) was originally chosen as an upper bound on the combined
number of A and AAAA records that could fit in 512-byte packets (31
and 17, respectively). it is not increased at this time.
so as to prevent a situation where the A records consume almost all of
these slots (at 768 bytes, a "best-case" name can fit almost 47 A
records), the order of parsing is swapped to process AAAA first. this
ensures roughly half of the slots are available to each address
family.
|
|
tcp fallback was originally deemed unwanted and unnecessary, since we
aim to return a bounded-size result from getaddrinfo anyway and
normally plenty of address records fit in the 512-byte udp dns limit.
however, this turned out to have several problems:
- some recursive nameservers truncate by omitting all the answers,
rather than sending as many as can fit.
- a pathological worst-case CNAME for a worst-case name can fill the
entire 512-byte space with just the two names, leaving no room for
any addresses.
- the res_* family of interfaces allow querying of non-address records
such as TLSA (DANE), TXT, etc. which can be very large. for many of
these, it's critical that the caller see the whole RRset. also,
res_send/res_query are specified to return the complete, untruncated
length so that the caller can retry with an appropriately-sized
buffer. determining this is not possible without tcp.
so, it's time to add tcp fallback.
the fallback strategy implemented here uses one tcp socket per
question (1 or 2 questions), initiated via tcp fastopen when possible.
the connection is made to the nameserver that issued the truncated
answer. right now, fallback happens unconditionally when truncation is
seen. this can, and may later be, relaxed for queries made by the
getaddrinfo system, since it will only use a bounded number of results
anyway.
retry is not attempted again after failure over tcp. the logic could
easily be adapted to do that, but it's of questionable value, since
the tcp stack automatically handles retransmission and the successs
answer with TC=1 over udp strongly suggests that the nameserver has
the full answer ready to give. further retry is likely just "take
longer to fail".
|
|
for extremely small buffer sizes, the DNS query core in __res_msend
may malfunction completely, being unable to get even the headers to
determine the response code. but there is also a problem for
reasonable sizes under 512 bytes: __res_msend is unable to determine
if the udp answer was truncated at the recv layer, in which case it
may be incomplete, and res_send is then unable to honor its contract
to return the length of the full, non-truncated answer.
at present, res_send does not honor that contract anyway when the full
answer would exceed 512 bytes, since there is no tcp fallback, but
this change at least makes it consistent in a context where this is
the only "full answer" to be had.
|
|
this is groundwork for TCP fallback support, but does not itself
change behavior in any way.
|
|
this was apparently omitted long ago out of a lack of understanding of
its importance and the fact that POSIX doesn't specify it. despite not
being officially standardized, however, it turns out that at least
AIX, glibc, NetBSD, OpenBSD, QNX, and Solaris document and support it.
in certain usage cases, such as implementing a DNS gateway on top of
the stub resolver interfaces, it's necessary to distinguish the case
where a name does not exit (NxDomain) from one where it exists but has
no addresses (or other records) of the requested type (NODATA). in
fact, even the legacy gethostbyname API had this distinction, which we
were previously unable to support correctly because the backend lacked
it.
apart from fixing an important functionality gap, adding this
distinction helps clarify to users how search domain fallback works
(falling back in cases corresponding to EAI_NONAME, not in ones
corresponding to EAI_NODATA), a topic that has been a source of
ongoing confusion and frustration.
as a result of this change, EAI_NONAME is no longer a valid universal
error code for getaddrinfo in the case where AI_ADDRCONFIG has
suppressed use of all address families. in order to return an accurate
result in this case, getaddrinfo is modified to still perform at least
one lookup. this will almost surely fail (with a network error, since
there is no v4 or v6 network to query DNS over) unless a result comes
from the hosts file or from ip literal parsing, but in case it does
succeed, the result is replaced by EAI_NODATA.
glibc has a related error code, EAI_ADDRFAMILY, that could be used for
the AI_ADDRCONFIG case and certain NODATA cases, but distinguishing
them properly in full generality seems to require additional DNS
queries that are otherwise not useful. on glibc, it is only used for
ip literals with mismatching family, not for DNS or hosts file results
where the name has addresses only in the opposite family. since this
seems misleading and inconsistent, and since EAI_NODATA already covers
the semantic case where the "name" exists but doesn't have any
addresses in the requested family, we do not adopt EAI_ADDRFAMILY at
this time. this could be changed at some point if desired, but the
logic for getting all the corner cases with AI_ADDRCONFIG right is
slightly nontrivial.
|
|
EAI_MEMORY is not possible (but would not provide errno if it were)
and EAI_FAIL does not provide errno. treat the latter as EBADMSG to
match how it's handled in gethostbyname2_r (it indicates erroneous or
failure response from the nameserver).
|
|
EAI_MEMORY is not possible because the resolver backend does not
allocate. if it did, it would be necessary for us to explicitly return
ENOMEM as the error, since errno is not guaranteed to reflect the
error cause except in the case of EAI_SYSTEM, so the existing code was
not correct anyway.
|
|
these functions are horribly underspecified, inconsistent between
historical systems, and should never have been included. however, the
signatures we have match the glibc ones, and the glibc behavior is to
treat NxDomain and NODATA results as a success condition, not an
ENOENT error.
|
|
this distinction only affects search, but allows search to continue
when concatenating one of the search domains onto the requested name
produces a result that's not valid. this can happen when the
concatenation is too long, or one of the search list entries is
itself not valid.
as a consequence of this change, having "." in the search domains list
will now be ignored/skipped rather than making the lookup abort with
no results (due to producing a concatenation ending in ".."). this
behavior could be changed later if needed.
|
|
the main loop already errors out on zero-length labels within the
name, but terminates before having a chance to check for an erroneous
final zero-length label, instead producing a malformed query packet
with a '.' byte instead of the terminating zero.
rather than poke at the look logic, simply detect this condition early
and error out without doing anything.
this also fixes behavior of getaddrinfo when "." appears in the search
domain list, which produces a name ending in ".." after concatenation,
at least in the sense of no longer emitting malformed packets on the
network. however, due to other issues, the lookup will still fail.
|
|
if resolv.conf lists no nameservers at all, the default of 127.0.0.1
is used. however, another "no nameservers" case arises where the
system has ipv6 support disabled/configured-out and resolv.conf only
contains v6 nameservers. this caused the resolver to repeat socket
operations that will necessarily fail (sending to one or more
wrong-family addresses) while waiting for a timeout.
it would be contrary to configured intent to query 127.0.0.1 in this
case, but the current behavior is not conducive to diagnosing the
configuration problem. instead, fail immediately with EAI_SYSTEM and
errno==EAFNOSUPPORT so that the configuration error is reportable.
|
|
apparently this code path was never tested, as it's not usual to have
v6 nameservers listed on a system without v6 networking support. but
it was always intended to work.
when reverting to binding a v4 address, also revert the family in the
sockaddr structure and the socklen for it. otherwise bind will just
fail due to mismatched family/sockaddr size.
fix dns resolver fallback when v6 nameservers are listed by
|
|
this code attempts to use the value of errno from failure of socket or
connect to infer availability of the requested address family (v4 or
v6). however, in the case where connect failed, there is an
intervening call to close between connect and the use of errno. close
is not required to preserve errno on success, and in fact the
__aio_close code, which is called whenever aio is linked and thus
always called in dynamic-linked programs, unconditionally clobbers
errno. as a result, getaddrinfo fails with EAI_SYSTEM and errno=ENOENT
rather than correctly determining that the address family was
unavailable.
this fix is based on report/patch by Jussi Nieminen, but simplified
slightly to avoid breaking the case where socket, not connect, failed.
|
|
assuming a reasonable realtime clock, res_mkquery is highly unlikely
to generate the same query id twice in a row, but it's possible with a
very low-resolution system clock or under extreme delay of forward
progress. when it happens, res_msend fails to wait for both answers,
and instead stops listening after getting two answers to the same
query (A or AAAA).
to avoid this, increment one byte of the second query's id if it
matches the first query's. don't bother checking if the second byte is
also equal, since it doesn't matter; we just need to ensure that at
least one byte is distinct.
|
|
the wrong name works only by accident.
|
|
|
|
prior to commit e68c51ac46a9f273927aef8dcebc89912ab19ece, h_errno was
actually an external data object not a macro. bring back the symbol,
and use it as the storage for the main thread's h_errno.
technically this still doesn't provide full compatibility if the
application was multithreaded, but at the time there were no res_*
functions (and they did not set h_errno anyway), so any use of h_errno
would have been via thread-unsafe functions. thus a solution that just
fixes single-threaded applications seems acceptable.
|
|
while it's not clearly documented anywhere, this is the historical
behavior which some applications expect. applications which need to
see the response packet in these cases, for example to distinguish
between nonexistence in a secure vs insecure zone, must already use
res_mkquery with res_send in order to be portable, since most if not
all other implementations of res_query don't provide it.
|
|
the framework to do this always existed but it was deemed unnecessary
because the only [ex-]standard functions using h_errno were not
thread-safe anyway. however, some of the nonstandard res_* functions
are also supposed to set h_errno to indicate the cause of error, and
were unable to do so because it was not thread-safe. this change is a
prerequisite for fixing them.
|
|
prior to this change, the canonical name came from the first hosts
file line matching the requested family, so the canonical name for a
given hostname could differ depending on whether it was requested with
AF_UNSPEC or a particular family (AF_INET or AF_INET6). now, the
canonical name is deterministically the first one to appear with the
requested name as an alias.
|
|
the existing code clobbered the canonical name already discovered
every time another matching line was found, which will necessarily be
the case when a hostname has both IPv4 and v6 definitions.
patch by Wolf.
|
|
the internal __res_msend returns 0 on timeout without having obtained
any conclusive answer, but in this case has not filled in meaningful
anslen. res_send wrongly treated that as success, but returned a zero
answer length. any reasonable caller would eventually end up treating
that as an error when attempting to parse/validate it, but it should
just be reported as an error.
alternatively we could return the last-received inconclusive answer
(typically servfail), but doing so would require internal changes in
__res_msend. this may be considered later.
|
|
the old logic here likely dates back, at least in inspiration, to
before it was recognized that transient errors must not be allowed to
reflect the contents of successful results and must be reported to the
application.
here, the dns backend for getaddrinfo, when performing a paired query
for v4 and v6 addresses, accepted results for one address family even
if the other timed out. (the __res_msend backend does not propagate
error rcodes back to the caller, but continues to retry until timeout,
so other error conditions were not actually possible.)
this patch moves the checks to take place before answer parsing, and
performs them for each answer rather than only the answer to the first
query. if nxdomain is seen it's assumed to apply to both queries since
that's how dns semantics work.
|
|
the AD (authenticated data) bit in outgoing dns queries is defined by
rfc3655 to request that the nameserver report (via the same bit in the
response) whether the result is authenticated by DNSSEC. while all
results returned by a DNSSEC conforming nameserver will be either
authenticated or cryptographically proven to lack DNSSEC protection,
for some applications it's necessary to be able to distinguish these
two cases. in particular, conforming and compatible handling of DANE
(TLSA) records requires enforcing them only in signed zones.
when the AD bit was first defined for queries, there were reports of
compatibility problems with broken firewalls and nameservers dropping
queries with it set. these problems are probably a thing of the past,
and broken nameservers are already unsupported. however, since there
is no use in the AD bit with the netdb.h interfaces, explicitly clear
it in the queries they make. this ensures that, even with broken
setups, the standard functions will work, and at most the res_*
functions break.
|
|
commit 59324c8b0950ee94db846a50554183c845ede160 added __socketcall
analogous to __syscall, returning the negated error rather than
setting errno. use it to simplify the fallback path of socket(),
avoiding extern calls and access to errno.
Author: Rich Felker <dalias@aerifal.cx>
Date: Tue Jul 30 17:51:16 2019 -0400
make __socketcall analogous to __syscall, error-returning
|
|
always try the time64 syscall first since we can use its success to
conclude that no conversion is needed (any setsockopt for the
timestamp options would have succeeded without need for fallbacks).
otherwise, we have to remember the original controllen for each
msghdr, requiring O(vlen) space, so vlen must be bounded. linux clamps
it to IOV_MAX for sendmmsg only (not recvmmsg), but doing the same for
recvmmsg is not unreasonable, especially since the limitation will
only apply to old kernels.
we could optimize to avoid trying SYS_recvmmsg_time64 first if all
msghdrs have controllen zero, or support unlimited vlen by looping and
emulating the timeout logic, but I'm not inclined to do complex and
error-prone optimizations on a function that has so many underlying
problems it should really never be used.
|
|
the definitions of SO_TIMESTAMP* changed on 32-bit archs in commit
38143339646a4ccce8afe298c34467767c899f51 to the new versions that
provide 64-bit versions of timeval/timespec structure in control
message payload. socket options, being state attached to the socket
rather than function calls, are not trivial to implement as fallbacks
on ENOSYS, and support for them was initially omitted on the
assumption that the ioctl-based polling alternatives (SIOCGSTAMP*)
could be used instead by applications if setsockopt fails.
unfortunately, it turns out that SO_TIMESTAMP is sufficiently old and
widely supported that a number of applications assume it's available
and treat errors as fatal.
this patch introduces emulation of SO_TIMESTAMP[NS] on pre-time64
kernels by falling back to setting the "_OLD" (time32) versions of the
options if the time64 ones are not recognized, and performing
translation of the SCM_TIMESTAMP[NS] control messages in recvmsg.
since recvmsg does not know whether its caller is legacy time32 code
or time64, it performs translation for any SCM_TIMESTAMP[NS]_OLD
control messages it sees, leaving the original time32 timestamp as-is
(it can't be rewritten in-place anyway, and memmove would be mildly
expensive) and appending the converted time64 control message at the
end of the buffer. legacy time32 callers will see the converted one as
a spurious control message of unknown type; time64 callers running on
pre-time64 kernels will see the original one as a spurious control
message of unknown type. a time64 caller running on a kernel with
native time64 support will only see the time64 version of the control
message.
emulation of SO_TIMESTAMPING is not included at this time since (1)
applications which use it seem to be prepared for the possibility that
it's not present or working, and (2) it can also be used in sendmsg
control messages, in a manner that looks complex to emulate
completely, and costly even when running on a time64-supporting
kernel.
corresponding changes in recvmmsg are not made at this time; they will
be done separately.
|
|
somewhat analogous to commit d0b547dfb5f7678cab6bc39dd736ed6454357ca4,
but here the omission of the null timeout check was in the time64
syscall code path. this code is not yet used except on x32.
|
|
without this, the SO_RCVTIMEO and SO_SNDTIMEO socket options would
stop working on pre-5.1 kernels after time_t is switched to 64-bit and
their values are changed to the new time64 versions.
new code is written such that it's statically unreachable on 64-bit
archs, and on existing 32-bit archs until the macro values are changed
to activate 64-bit time_t.
|
|
the time64 syscall is used only if the timeout does not fit in 32
bits. after preprocessing, the code is unchanged on 64-bit archs. for
32-bit archs, the timeout now goes through an intermediate copy,
meaning that the caller does not get back the updated timeout. this is
based on my reading of the documentation, which does not document the
updating as a contract you can rely on, and mentions that the whole
recvmmsg timeout mechanism is buggy and unlikely to be useful. if it
turns out that there's interest in making the remaining time
officially available to callers, such functionality could be added
back later.
|
|
The original logic considered each byte until it either found a 0
value or a value >= 192. This means if a string segment contained any
byte >= 192 it was interepretted as a compressed segment marker even
if it wasn't in a position where it should be interpretted as such.
The fix is to adjust dn_skipname to increment by each segments size
rather than look at each character. This avoids misinterpretting
string segment characters by not considering those bytes.
|
|
addressing &out[k].sa was arguably undefined, despite &out[k] being
defined the slot one past the end of an array, since the member access
.sa is intervening between the [] operator and the & operator.
|
|
the backindex stored by getaddrinfo to allow freeaddrinfo to perform
partial-free wrongly used the address result index, rather than the
output slot index, and thus was only valid when they were equal
(nservs==1).
patch based on report with proposed fix by Markus Wichmann.
|
|
the specification for freeaddrinfo allows it to be used to free
"arbitrary sublists" of the list returned by getaddrinfo. it's not
clearly stated how such sublists come into existence, but the
interpretation seems to be that the application can edit the ai_next
pointers to cut off a portion of the list and then free it.
actual freeing of individual list slots is contrary to the design of
our getaddrinfo implementation, which has no failure paths after
making a single allocation, so that light callers can avoid linking
realloc/free. freeing individual slots is also incompatible with
sharing the string for ai_canonname, which the current implementation
does despite no requirement that it be present except on the first
result. so, rather than actually freeing individual slots, provide a
way to find the start of the allocated array, and reference-count it,
freeing the memory all at once after the last slot has been freed.
since the language in the spec is "arbitrary sublists", no provision
for handling other constructs like multiple lists glued together,
circular links, etc. is made. presumably passing such a construct to
freeaddrinfo produces undefined behavior.
|
|
despite not being documented to do so in the standard or Linux
documentation, attempts to udp connect to 127.0.0.1 or ::1 generate
EADDRNOTAVAIL when the loopback device is not configured and there is
no default route for IPv6. this caused getaddrinfo with AI_ADDRCONFIG
to fail with EAI_SYSTEM and EADDRNOTAVAIL on some no-IPv6
configurations, rather than the intended behavior of detecting IPv6 as
unsuppported and producing IPv4-only results.
previously, only EAFNOSUPPORT was treated as unavailability of the
address family being probed. instead, treat all errors related to
inability to get an address or route as conclusive that the family
being probed is unsupported, and only fail with EAI_SYSTEM on other
errors.
further improvements may be desirable, such as reporting EAI_AGAIN
instead of EAI_SYSTEM for errors which are expected to be transient,
but this patch should suffice to fix the serious regression.
|
|
libc.h was intended to be a header for access to global libc state and
related interfaces, but ended up included all over the place because
it was the way to get the weak_alias macro. most of the inclusions
removed here are places where weak_alias was needed. a few were
recently introduced for hidden. some go all the way back to when
libc.h defined CANCELPT_BEGIN and _END, and all (wrongly implemented)
cancellation points had to include it.
remaining spurious users are mostly callers of the LOCK/UNLOCK macros
and files that use the LFS64 macro to define the awful *64 aliases.
in a few places, new inclusion of libc.h is added because several
internal headers no longer implicitly include libc.h.
declarations for __lockfile and __unlockfile are moved from libc.h to
stdio_impl.h so that the latter does not need libc.h. putting them in
libc.h made no sense at all, since the macros in stdio_impl.h are
needed to use them correctly anyway.
|
|
|
|
|
|
commits leading up to this one have moved the vast majority of
libc-internal interface declarations to appropriate internal headers,
allowing them to be type-checked and setting the stage to limit their
visibility. the ones that have not yet been moved are mostly
namespace-protected aliases for standard/public interfaces, which
exist to facilitate implementing plain C functions in terms of POSIX
functionality, or C or POSIX functionality in terms of extensions that
are not standardized. some don't quite fit this description, but are
"internally public" interfacs between subsystems of libc.
rather than create a number of newly-named headers to declare these
functions, and having to add explicit include directives for them to
every source file where they're needed, I have introduced a method of
wrapping the corresponding public headers.
parallel to the public headers in $(srcdir)/include, we now have
wrappers in $(srcdir)/src/include that come earlier in the include
path order. they include the public header they're wrapping, then add
declarations for namespace-protected versions of the same interfaces
and any "internally public" interfaces for the subsystem they
correspond to.
along these lines, the wrapper for features.h is now responsible for
the definition of the hidden, weak, and weak_alias macros. this means
source files will no longer need to include any special headers to
access these features.
over time, it is my expectation that the scope of what is "internally
public" will expand, reducing the number of source files which need to
include *_impl.h and related headers down to those which are actually
implementing the corresponding subsystems, not just using them.
|
|
unlike the other res/dn functions, this one is tied to struct
resolvconf which is not a public interface, so put it in the private
header for its subsystem.
|
|
the source file for this function is completely standalone, but it
doesn't seem worth adding a header just for it, so declare it in
lookup.h for now.
|
|
policy is that all public functions which have a public declaration
should be defined in a context where that public declaration is
visible, to avoid preventable type mismatches.
an audit performed using GCC's -Wmissing-declarations turned up the
violations corrected here. in some cases the public header had not
been included; in others, a feature test macro needed to make the
declaration visible had been omitted.
in the case of gethostent and getnetent, the omission seems to have
been intentional, as a hack to admit a single stub definition for both
functions. this kind of hack is no longer acceptable; it's UB and
would not fly with LTO or advanced toolchains. the hack is undone to
make exposure of the declarations possible.
|
|
commit 4f35eb7591031a1e5ef9828f9304361f282f28b9 introduced this bug.
it is not present in any released versions. inadvertent use of the &
operator on an array into which we're indexing produced arithmetic on
the wrong-type pointer, with undefined behavior.
|
|
this flag is notoriously under-/mis-specified, and in the past it was
implemented as a nop, essentially considering the absence of a
loopback interface with 127.0.0.1 and ::1 addresses an unsupported
configuration. however, common real-world container environments omit
IPv6 support (even for the network-namespaced loopback interface), and
some kernels omit IPv6 support entirely. future systems on the other
hand might omit IPv4 entirely.
treat these as supported configurations and suppress results of the
unconfigured/unsupported address families when AI_ADDRCONFIG is
requested. use routability of the loopback address to make the
determination; unlike other implementations, we do not exclude
loopback from the "an address is configured" condition, since there is
no basis in the specification for such exclusion. obtaining a result
with AI_ADDRCONFIG does not imply routability of the result, and
applications must still be able to cope with unroutable results even
if they pass AI_ADDRCONFIG.
|
|
to produce sorted results roughly corresponding to RFC 3484/6724,
__lookup_name computes routability and choice of source address via
dummy UDP connect operations (which do not produce any packets). since
at the logical level, the properties fed into the sort key are
computed on ipv6 addresses, the code was written to use the v4mapped
ipv6 form of ipv4 addresses and share a common code path for them all.
however, on kernels where ipv6 support has been completely omitted,
this causes ipv4 to appear equally unroutable as ipv6, thereby putting
unreachable ipv6 addresses before ipv4 addresses in the results.
instead, use only ipv4 sockets to compute routability for ipv4
addresses. some gratuitous conversion back and forth is left so that
the logic is not affected by these changes. it may be possible to
simplify the ipv4 case considerably, thereby reducing code size and
complexity.
|
|
maintainer's note: this change is for conformance with RFC 5952,
4.2.2, which explicitly forbids use of :: to shorten a single 16-bit 0
field when producing the canonical text representation for an IPv6
address. fixes a test failure reported by Philip Homburg, who also
submitted a patch, but this fix is simpler and should produce smaller
code.
|
|
if a final dot was included in the queried host name to anchor it to
the dns root/suppress search domains, and the result was not a CNAME,
the returned canonical name included the final dot. this was not
consistent with other implementations, confused some applications, and
does not seem desirable.
POSIX specifies returning a pointer to, or to a copy of, the input
nodename, when the canonical name is not available, but does not
attempt to specify what constitutes "not available". in the case of
search, we already have an implementation-defined "availability" of a
canonical name as the fully-qualified name resulting from search, so
defining it similarly in the no-search case seems reasonable in
addition to being consistent with other implementations.
as a bonus, fix the case where more than one trailing dot is included,
since otherwise the changes made here would wrongly cause lookups with
two trailing dots to succeed. previously this case resulted in
malformed dns queries and produced EAI_AGAIN after a timeout. now it
fails immediately with EAI_NONAME.
|
|
If AI_NUMERICSERV is specified and a numeric service was not provided,
POSIX mandates getaddrinfo return EAI_NONAME. EAI_SERVICE is only for
services that cannot be used on the specified socket type.
|
|
MAXADDRS was chosen not to need enforcement, but the logic used to
compute it assumes the answers received match the RR types of the
queries. specifically, it assumes that only one replu contains A
record answers. if the replies to both the A and the AAAA query have
their answer sections filled with A records, MAXADDRS can be exceeded
and clobber the stack of the calling function.
this bug was found and reported by Felix Wilhelm.
|