summaryrefslogtreecommitdiff
path: root/src/thread/pthread_create.c
AgeCommit message (Collapse)AuthorFilesLines
2019-02-22add membarrier syscall wrapper, refactor dynamic tls install to use itRich Felker1-2/+2
the motivation for this change is twofold. first, it gets the fallback logic out of the dynamic linker, improving code readability and organization. second, it provides application code that wants to use the membarrier syscall, which depends on preregistration of intent before the process becomes multithreaded unless unbounded latency is acceptable, with a symbol that, when linked, ensures that this registration happens.
2019-02-22make thread list lock a recursive lockRich Felker1-11/+21
this is a prerequisite for factoring the membarrier fallback code into a function that can be called from a context with the thread list already locked or independently.
2019-02-18install dynamic tls synchronously at dlopen, streamline accessRich Felker1-0/+2
previously, dynamic loading of new libraries with thread-local storage allocated the storage needed for all existing threads at load-time, precluding late failure that can't be handled, but left installation in existing threads to take place lazily on first access. this imposed an additional memory access and branch on every dynamic tls access, and imposed a requirement, which was not actually met, that the dynamic tlsdesc asm functions preserve all call-clobbered registers before calling C code to to install new dynamic tls on first access. the x86[_64] versions of this code wrongly omitted saving and restoring of fpu/vector registers, assuming the compiler would not generate anything using them in the called C code. the arm and aarch64 versions saved known existing registers, but failed to be future-proof against expansion of the register file. now that we track live threads in a list, it's possible to install the new dynamic tls for each thread at dlopen time. for the most part, synchronization is not needed, because if a thread has not synchronized with completion of the dlopen, there is no way it can meaningfully request access to a slot past the end of the old dtv, which remains valid for accessing slots which already existed. however, it is necessary to ensure that, if a thread sees its new dtv pointer, it sees correct pointers in each of the slots that existed prior to the dlopen. my understanding is that, on most real-world coherency architectures including all the ones we presently support, a built-in consume order guarantees this; however, don't rely on that. instead, the SYS_membarrier syscall is used to ensure that all threads see the stores to the slots of their new dtv prior to the installation of the new dtv. if it is not supported, the same is implemented in userspace via signals, using the same mechanism as __synccall. the __tls_get_addr function, variants, and dynamic tlsdesc asm functions are all updated to remove the fallback paths for claiming new dynamic tls, and are now all branch-free.
2019-02-16rewrite __synccall in terms of global thread listRich Felker1-4/+0
the __synccall mechanism provides stop-the-world synchronous execution of a callback in all threads of the process. it is used to implement multi-threaded setuid/setgid operations, since Linux lacks them at the kernel level, and for some other less-critical purposes. this change eliminates dependency on /proc/self/task to determine the set of live threads, which in addition to being an unwanted dependency and a potential point of resource-exhaustion failure, turned out to be inaccurate. test cases provided by Alexey Izbyshev showed that it could fail to reflect newly created threads. due to how the presignaling phase worked, this usually yielded a deadlock if hit, but in the worst case it could also result in threads being silently missed (allowed to continue running without executing the callback).
2019-02-15track all live threads in an AS-safe, fully-consistent linked listRich Felker1-30/+73
the hard problem here is unlinking threads from a list when they exit without creating a window of inconsistency where the kernel task for a thread still exists and is still executing instructions in userspace, but is not reflected in the list. the magic solution here is getting rid of per-thread exit futex addresses (set_tid_address), and instead using the exit futex to unlock the global thread list. since pthread_join can no longer see the thread enter a detach_state of EXITED (which depended on the exit futex address pointing to the detach_state), it must now observe the unlocking of the thread list lock before it can unmap the joined thread and return. it doesn't actually have to take the lock. for this, a __tl_sync primitive is offered, with a signature that will allow it to be enhanced for quick return even under contention on the lock, if needed. for now, the exiting thread always performs a futex wake on its detach_state. a future change could optimize this out except when there is already a joiner waiting. initial/dynamic variants of detached state no longer need to be tracked separately, since the futex address is always set to the global list lock, not a thread-local address that could become invalid on detached thread exit. all detached threads, however, must perform a second sigprocmask syscall to block implementation-internal signals, since locking the thread list with them already blocked is not permissible. the arch-independent C version of __unmapself no longer needs to take a lock or setup its own futex address to release the lock, since it must necessarily be called with the thread list lock already held, guaranteeing exclusive access to the temporary stack. changes to libc.threads_minus_1 no longer need to be atomic, since they are guarded by the thread list lock. it is largely vestigial at this point, and can be replaced with a cheaper boolean indicating whether the process is multithreaded at some point in the future.
2019-02-15always block signals for starting new threads, refactor start argsRich Felker1-37/+56
whether signals need to be blocked at thread start, and whether unblocking is necessary in the entry point function, has historically depended on intricacies of the cancellation design and on whether there are scheduling operations to perform on the new thread before its successful creation can be committed. future changes to track an AS-safe list of live threads will require signals to be blocked whenever changes are made to the list, so ... prior to commits b8742f32602add243ee2ce74d804015463726899 and 40bae2d32fd6f3ffea437fa745ad38a1fe77b27e, a signal mask for the entry function to restore was part of the pthread structure. it was removed to trim down the size of the structure, which both saved a small amount of stack space and improved code generation on archs where small immediate displacements are less costly than arbitrary ones, by limiting the range of offsets between the base of the thread structure, its members, and the thread pointer. these commits moved the saved mask to a special structure used only when special scheduling was needed, in which case the pthread_create caller and new thread had to synchronize with each other and could use this memory to pass a mask. this commit partially reverts the above two commits, but instead of putting the mask back in the pthread structure, it moves all "start argument" members out of the pthread structure, trimming it down further, and puts them in a separate structure passed on the new thread's stack. the code path for explicit scheduling of the new thread is also changed to synchronize with the calling thread in such a way to avoid spurious futex wakes.
2018-09-18remove redundant declarations of __default_stacksize, __default_guardsizeRich Felker1-2/+0
these are now declared in pthread_impl.h.
2018-09-12split internal lock API out of libc.h, creating lock.hRich Felker1-0/+1
this further reduces the number of source files which need to include libc.h and thereby be potentially exposed to libc global state and internals. this will also facilitate further improvements like adding an inline fast-path, if we want to do so later.
2018-09-12overhaul internally-public declarations using wrapper headersRich Felker1-4/+0
commits leading up to this one have moved the vast majority of libc-internal interface declarations to appropriate internal headers, allowing them to be type-checked and setting the stage to limit their visibility. the ones that have not yet been moved are mostly namespace-protected aliases for standard/public interfaces, which exist to facilitate implementing plain C functions in terms of POSIX functionality, or C or POSIX functionality in terms of extensions that are not standardized. some don't quite fit this description, but are "internally public" interfacs between subsystems of libc. rather than create a number of newly-named headers to declare these functions, and having to add explicit include directives for them to every source file where they're needed, I have introduced a method of wrapping the corresponding public headers. parallel to the public headers in $(srcdir)/include, we now have wrappers in $(srcdir)/src/include that come earlier in the include path order. they include the public header they're wrapping, then add declarations for namespace-protected versions of the same interfaces and any "internally public" interfaces for the subsystem they correspond to. along these lines, the wrapper for features.h is now responsible for the definition of the hidden, weak, and weak_alias macros. this means source files will no longer need to include any special headers to access these features. over time, it is my expectation that the scope of what is "internally public" will expand, reducing the number of source files which need to include *_impl.h and related headers down to those which are actually implementing the corresponding subsystems, not just using them.
2018-09-12move declarations of tls setup/access functions to pthread_impl.hRich Felker1-2/+0
it's already included in all places where these are needed, and aside from __tls_get_addr, they're all implementation internals.
2018-08-16fix pthread_create return value with PTHREAD_EXPLICIT_SCHEDRich Felker1-0/+1
due to moved code, commit b8742f32602add243ee2ce74d804015463726899 inadvertently used the return value of __clone, rather than the return value of SYS_sched_setscheduler in the new thread, to check whether it needed to report failure. since a successful __clone returns the tid of the new thread, which is never zero, this caused pthread_create always to return with an invalid error number in the code path for PTHREAD_EXPLICIT_SCHED. this regression was not present in any releases.
2018-07-27make pthread_attr_init honor defaults set by pthread_setattr_default_npRich Felker1-2/+2
this fixes a major gap in the intended functionality of pthread_setattr_default_np. if application/library code creating a thread does not pass a null attribute pointer to pthread_create, but sets up an attribute object to change other properties while leaving the stack alone, the created thread will get a stack with size DEFAULT_STACK_SIZE. this makes pthread_setattr_default_np useless for working around stack overflow issues in such applications, and leaves a major risk of regression if previously-working code switches from using a null attribute pointer to an attribute object. this change aligns the behavior more closely with the glibc pthread_setattr_default_np functionality too, albeit via a different mechanism. glibc encodes "default" specially in the attribute object and reads the actual default at thread creation time. with this commit, we now copy the current default into the attribute object at pthread_attr_init time, so that applications that query the properties of the attribute object will see the right values.
2018-05-09make linking of thread-start with explicit scheduling conditionalRich Felker1-28/+7
the wrapper start function that performs scheduling operations is unreachable if pthread_attr_setinheritsched is never called, so move it there rather than the pthread_create source file, saving some code size for static-linked programs.
2018-05-09improve design of thread-start with explicit scheduling attributesRich Felker1-21/+39
eliminate the awkward startlock mechanism and corresponding fields of the pthread structure that were only used at startup. instead of having pthread_create perform the scheduling operations and having the new thread wait for them to be completed, start the new thread with a wrapper start function that performs its own scheduling, sending the result code back via a futex. this way the new thread can use storage from the calling thread's stack rather than permanent fields in the pthread structure.
2018-05-05improve joinable/detached thread state handlingRich Felker1-9/+12
previously, some accesses to the detached state (from pthread_join and pthread_getattr_np) were unsynchronized; they were harmless in programs with well-defined behavior, but ugly. other accesses (in pthread_exit and pthread_detach) were synchronized by a poorly named "exitlock", with an ad-hoc trylock operation on it open-coded in pthread_detach, whose only purpose was establishing protocol for which thread is responsible for deallocation of detached-thread resources. instead, use an atomic detach_state and unify it with the futex used to wait for thread exit. this eliminates 2 members from the pthread structure, gets rid of the hackish lock usage, and makes rigorous the trap added in commit 80bf5952551c002cf12d96deb145629765272db0 for catching attempts to join detached threads. it should also make attempt to detach an already-detached thread reliably trap.
2018-05-05improve pthread_exit synchronization with functions targeting tidRich Felker1-11/+13
if the last thread exited via pthread_exit, the logic that marked it dead did not account for the possibility of it targeting itself via atexit handlers. for example, an atexit handler calling pthread_kill(pthread_self(), SIGKILL) would return success (previously, ESRCH) rather than causing termination via the signal. move the release of killlock after the determination is made whether the exiting thread is the last thread. in the case where it's not, move the release all the way to the end of the function. this way we can clear the tid rather than spending storage on a dedicated dead-flag. clearing the tid is also preferable in that it hardens against inadvertent use of the value after the thread has terminated but before it is joined.
2018-05-02use a dedicated futex object for pthread_join instead of tid fieldRich Felker1-1/+2
the tid field in the pthread structure is not volatile, and really shouldn't be, so as not to limit the compiler's ability to reorder, merge, or split loads in code paths that may be relevant to performance (like controlling lock ownership). however, use of objects which are not volatile or atomic with futex wait is inherently broken, since the compiler is free to transform a single load into multiple loads, thereby using a different value for the controlling expression of the loop and the value passed to the futex syscall, leading the syscall to block instead of returning. reportedly glibc's pthread_join was actually affected by an equivalent issue in glibc on s390. add a separate, dedicated join_futex object for pthread_join to use.
2018-02-03store pthread stack guard sizes for pthread_getattr_npWilliam Pitcock1-1/+2
2018-01-09consistently use the LOCK an UNLOCK macrosJens Gustedt1-3/+3
In some places there has been a direct usage of the functions. Use the macros consistently everywhere, such that it might be easier later on to capture the fast path directly inside the macro and only have the call overhead on the slow path.
2017-09-06fix signal masking race in pthread_create with priority attributesRich Felker1-2/+7
if the parent thread was able to set the new thread's priority before it reached the check for 'startlock', the new thread failed to restore its signal mask and thus ran with all signals blocked. concept for patch by Sergei, who reported the issue; unnecessary changes were removed and comments added since the whole 'startlock' thing is non-idiomatic and confusing. eventually it should be replaced with use of idiomatic synchronization primitives.
2016-11-08add limited pthread_setattr_default_np API to set stack size defaultsRich Felker1-4/+8
based on patch by Timo Teräs: While generally this is a bad API, it is the only existing API to affect c++ (std::thread) and c11 (thrd_create) thread stack size. This patch allows applications only to increate stack and guard page sizes.
2016-11-08fix pthread_create regression from stack/guard size simplificationRich Felker1-1/+4
commit 33ce920857405d4f4b342c85b74588a15e2702e5 broke pthread_create in the case where a null attribute pointer is passed; rather than using the default sizes, sizes of 0 (plus the remainder of one page after TLS/TCB use) were used.
2016-11-07simplify pthread_attr_t stack/guard size representationRich Felker1-3/+3
previously, the pthread_attr_t object was always initialized all-zero, and stack/guard size were represented as differences versus their defaults. this required lots of confusing offset arithmetic everywhere they were used. instead, have pthread_attr_init fill in the default values, and work with absolute sizes everywhere.
2016-06-27fix failure to obtain EOWNERDEAD status for process-shared robust mutexesRich Felker1-1/+1
Linux's documentation (robust-futex-ABI.txt) claims that, when a process dies with a futex on the robust list, bit 30 (0x40000000) is set to indicate the status. however, what actually happens is that bits 0-30 are replaced with the value 0x40000000, i.e. bits 0-29 (containing the old owner tid) are cleared at the same time bit 30 is set. our userspace-side code for robust mutexes was written based on that documentation, assuming that kernel would never produce a futex value of 0x40000000, since the low (owner) bits would always be non-zero. commit d338b506e39b1e2c68366b12be90704c635602ce introduced this assumption explicitly while fixing another bug in how non-recoverable status for robust mutexes was tracked. presumably the tests conducted at that time only checked non-process-shared robust mutexes, which are handled in pthread_exit (which implemented the documented kernel protocol, not the actual one) rather than by the kernel. change pthread_exit robust list processing to match the kernel behavior, clearing bits 0-29 while setting bit 30, and use the value 0x7fffffff instead of 0x40000000 to encode non-recoverable status. the choice of value here is arbitrary; any value with at least one of bits 0-29 set should work just as well,
2015-06-17ignore ENOSYS error from mprotect in pthread_create and dynamic linkerRich Felker1-1/+2
this error simply indicated a system without memory protection (NOMMU) and should not cause failure in the caller.
2015-06-16refactor stdio open file list handling, move it out of global libc structRich Felker1-1/+2
functions which open in-memory FILE stream variants all shared a tail with __fdopen, adding the FILE structure to stdio's open file list. replacing this common tail with a function call reduces code size and duplication of logic. the list is also partially encapsulated now. function signatures were chosen to facilitate tail call optimization and reduce the need for additional accessor functions. with these changes, static linked programs that do not use stdio no longer have an open file list at all.
2015-05-16eliminate costly tricks to avoid TLS access for current locale stateRich Felker1-6/+0
the code being removed used atomics to track whether any threads might be using a locale other than the current global locale, and whether any threads might have abstract 8-bit (non-UTF-8) LC_CTYPE active, a feature which was never committed (still pending). the motivations were to support early execution prior to setup of the thread pointer, to partially support systems (ancient kernels) where thread pointer setup is not possible, and to avoid high performance cost on archs where accessing the thread pointer may be very slow. since commit 19a1fe670acb3ab9ead0fe31859ca7d4fe40dd54, the thread pointer is always available, so these hacks are no longer needed. removing them greatly simplifies the affected code.
2015-05-06fix stack protector crashes on x32 & powerpc due to misplaced TLS canaryRich Felker1-1/+1
i386, x86_64, x32, and powerpc all use TLS for stack protector canary values in the default stack protector ABI, but the location only matched the ABI on i386 and x86_64. on x32, the expected location for the canary contained the tid, thus producing spurious mismatches (resulting in process termination) upon fork. on powerpc, the expected location contained the stdio_locks list head, so returning from a function after calling flockfile produced spurious mismatches. in both cases, the random canary was not present, and a predictable value was used instead, making the stack protector hardening much less effective than it should be. in the current fix, the thread structure has been expanded to have canary fields at all three possible locations, and archs that use a non-default location must define a macro in pthread_arch.h to choose which location is used. for most archs (which lack TLS canary ABI) the choice does not matter.
2015-04-18make dlerror state and message thread-local and dynamically-allocatedRich Felker1-0/+2
this fixes truncation of error messages containing long pathnames or symbol names. the dlerror state was previously required by POSIX to be global. the resolution of bug 97 relaxed the requirements to allow thread-safe implementations of dlerror with thread-local state and message buffer.
2015-04-13remove remnants of support for running in no-thread-pointer modeRich Felker1-2/+0
since 1.1.0, musl has nominally required a thread pointer to be setup. most of the remaining code that was checking for its availability was doing so for the sake of being usable by the dynamic linker. as of commit 71f099cb7db821c51d8f39dfac622c61e54d794c, this is no longer necessary; the thread pointer is now valid before any libc code (outside of dynamic linker bootstrap functions) runs. this commit essentially concludes "phase 3" of the "transition path for removing lazy init of thread pointer" project that began during the 1.1.0 release cycle.
2015-04-10apply vmlock wait to __unmapself in pthread_exitRich Felker1-0/+4
2015-04-10redesign and simplify vmlock systemRich Felker1-4/+2
this global lock allows certain unlock-type primitives to exclude mmap/munmap operations which could change the identity of virtual addresses while references to them still exist. the original design mistakenly assumed mmap/munmap would conversely need to exclude the same operations which exclude mmap/munmap, so the vmlock was implemented as a sort of 'symmetric recursive rwlock'. this turned out to be unnecessary. commit 25d12fc0fc51f1fae0f85b4649a6463eb805aa8f already shortened the interval during which mmap/munmap held their side of the lock, but left the inappropriate lock design and some inefficiency. the new design uses a separate function, __vm_wait, which does not hold any lock itself and only waits for lock users which were already present when it was called to release the lock. this is sufficient because of the way operations that need to be excluded are sequenced: the "unlock-type" operations using the vmlock need only block mmap/munmap operations that are precipitated by (and thus sequenced after) the atomic-unlock they perform while holding the vmlock. this allows for a spectacular lack of synchronization in the __vm_wait function itself.
2015-04-10optimize out setting up robust list with kernel when not neededRich Felker1-0/+1
as a result of commit 12e1e324683a1d381b7f15dd36c99b37dd44d940, kernel processing of the robust list is only needed for process-shared mutexes. previously the first attempt to lock any owner-tracked mutex resulted in robust list initialization and a set_robust_list syscall. this is no longer necessary, and since the kernel's record of the robust list must now be cleared at thread exit time for detached threads, optimizing it out is more worthwhile than before too.
2015-04-10process robust list in pthread_exit to fix detached thread use-after-unmapRich Felker1-2/+27
the robust list head lies in the thread structure, which is unmapped before exit for detached threads. this leaves the kernel unable to process the exiting thread's robust list, and with a dangling pointer which may happen to point to new unrelated data at the time the kernel processes it. userspace processing of the robust list was already needed for non-pshared robust mutexes in order to perform private futex wakes rather than the shared ones the kernel would do, but it was conditional on linking pthread_mutexattr_setrobust and did not bother processing the pshared mutexes in the list, which requires additional logic for the robust list pending slot in case pthread_exit is interrupted by asynchronous process termination. the new robust list processing code is linked unconditionally (inlined in pthread_exit), handles both private and shared mutexes, and also removes the kernel's reference to the robust list before unmapping and exit if the exiting thread is detached.
2015-02-16make pthread_exit responsible for disabling cancellationRich Felker1-0/+2
this requirement is tucked away in XSH 2.9.5 Thread Cancellation under the heading Thread Cancellation Cleanup Handlers.
2015-01-15overhaul __synccall and fix AS-safety and other issues in set*idRich Felker1-0/+3
multi-threaded set*id and setrlimit use the internal __synccall function to work around the kernel's wrongful treatment of these process properties as thread-local. the old implementation of __synccall failed to be AS-safe, despite POSIX requiring setuid and setgid to be AS-safe, and was not rigorous in assuring that all threads were caught. in a worst case, threads late in the process of exiting could retain permissions after setuid reported success, in which case attacks to regain dropped permissions may have been possible under the right conditions. the new implementation of __synccall depends on the presence of /proc/self/task and will fail if it can't be opened, but is able to determine that it has caught all threads, and does not use any locks except its own. it thereby achieves AS-safety simply by blocking signals to preclude re-entry in the same thread. with this commit, all known conformance and safety issues in set*id functions should be fixed.
2014-09-07add C11 thread creation and related thread functionsRich Felker1-4/+12
based on patch by Jens Gustedt. the main difficulty here is handling the difference between start function signatures and thread return types for C11 threads versus POSIX threads. pointers to void are assumed to be able to represent faithfully all values of int. the function pointer for the thread start function is cast to an incorrect type for passing through pthread_create, but is cast back to its correct type before calling so that the behavior of the call is well-defined. changes to the existing threads implementation were kept minimal to reduce the risk of regressions, and duplication of code that carries implementation-specific assumptions was avoided for ease and safety of future maintenance.
2014-09-06use weak symbols for the POSIX functions that will be used by C threadsJens Gustedt1-7/+14
The intent of this is to avoid name space pollution of the C threads implementation. This has two sides to it. First we have to provide symbols that wouldn't pollute the name space for the C threads implementation. Second we have to clean up some internal uses of POSIX functions such that they don't implicitly drag in such symbols.
2014-08-23fix false ownership of stdio FILEs due to tid reuseRich Felker1-0/+2
this is analogous commit fffc5cda10e0c5c910b40f7be0d4fa4e15bb3f48 which fixed the corresponding issue for mutexes. the robust list can't be used here because the locks do not share a common layout with mutexes. at some point it may make sense to simply incorporate a mutex object into the FILE structure and use it, but that would be a much more invasive change, and it doesn't mesh well with the current design that uses a simpler code path for internal locking and pulls in the recursive-mutex-like code when the flockfile API is used explicitly.
2014-08-22fix use of uninitialized memory with application-provided thread stacksRich Felker1-0/+2
the subsequent code in pthread_create and the code which copies TLS initialization images to the new thread's TLS space assume that the memory provided to them is zero-initialized, which is true when it's obtained by pthread_create using mmap. however, when the caller provides a stack using pthread_attr_setstack, pthread_create cannot make any assumptions about the contents. simply zero-filling the relevant memory in this case is the simplest and safest fix.
2014-08-16enable private futex for process-local robust mutexesRich Felker1-0/+3
the kernel always uses non-private wake when walking the robust list when a thread or process exits, so it's not able to wake waiters listening with the private futex flag. this problem is solved by doing the equivalent in userspace as the last step of pthread_exit. care is taken to remove mutexes from the robust list before unlocking them so that the kernel will not attempt to access them again, possibly after another thread locks them. this removal code can treat the list as singly-linked, since no further code which would add or remove items is able to run at this point. moreover, the pending pointer is not needed since the mutexes being unlocked are all process-local; in the case of asynchronous process termination, they all cease to exist. since a process-local robust mutex cannot come into existence without a call to pthread_mutexattr_setrobust in the same process, the code for userspace robust list processing is put in that source file, and a weak alias to a dummy function is used to avoid pulling in this bloat as part of pthread_exit in static-linked programs.
2014-07-16work around constant folding bug 61144 in gcc 4.9.0 and 4.9.1Rich Felker1-3/+3
previously we detected this bug in configure and issued advice for a workaround, but this turned out not to work. since then gcc 4.9.0 has appeared in several distributions, and now 4.9.1 has been released without a fix despite this being a wrong code generation bug which is supposed to be a release-blocker, per gcc policy. since the scope of the bug seems to affect only data objects (rather than functions) whose definitions are overridable, and there are only a very small number of these in musl, I am just changing them from const to volatile for the time being. simply removing the const would be sufficient to make gcc 4.9.1 work (the non-const case was inadvertently fixed as part of another change in gcc), and this would also be sufficient with 4.9.0 if we forced -O0 on the affected files or on the whole build. however it's cleaner to just remove all the broken compiler detection and use volatile, which will ensure that they are never constant-folded. the quality of a non-broken compiler's output should not be affected except for the fact that these objects are no longer const and thus possibly add a few bytes to data/bss. this change can be reconsidered and possibly reverted at some point in the future when the broken gcc versions are no longer relevant.
2014-07-05eliminate use of cached pid from thread structureRich Felker1-1/+0
the main motivation for this change is to remove the assumption that the tid of the main thread is also the pid of the process. (the value returned by the set_tid_address syscall was used to fill both fields despite it semantically being the tid.) this is historically and presently true on linux and unlikely to change, but it conceivably could be false on other systems that otherwise reproduce the linux syscall api/abi. only a few parts of the code were actually still using the cached pid. in a couple places (aio and synccall) it was a minor optimization to avoid a syscall. caching could be reintroduced, but lazily as part of the public getpid function rather than at program startup, if it's deemed important for performance later. in other places (cancellation and pthread_kill) the pid was completely unnecessary; the tkill syscall can be used instead of tgkill. this is actually a rather subtle issue, since tgkill is supposedly a solution to race conditions that can affect use of tkill. however, as documented in the commit message for commit 7779dbd2663269b465951189b4f43e70839bc073, tgkill does not actually solve this race; it just limits it to happening within one process rather than between processes. we use a lock that avoids the race in pthread_kill, and the use in the cancellation signal handler is self-targeted and thus not subject to tid reuse races, so both are safe regardless of which syscall (tgkill or tkill) is used.
2014-07-02add locale frameworkRich Felker1-0/+7
this commit adds non-stub implementations of setlocale, duplocale, newlocale, and uselocale, along with the data structures and minimal code needed for representing the active locale on a per-thread basis and optimizing the common case where thread-local locale settings are not in use. at this point, the data structures only contain what is necessary to represent LC_CTYPE (a single flag) and LC_MESSAGES (a name for use in finding message translation files). representation for the other categories will be added later; the expectation is that a single pointer will suffice for each. for LC_CTYPE, the strings "C" and "POSIX" are treated as special; any other string is accepted and treated as "C.UTF-8". for other categories, any string is accepted after being truncated to a maximum supported length (currently 15 bytes). for LC_MESSAGES, the name is kept regardless of whether libc itself can use such a message translation locale, since applications using catgets or gettext should be able to use message locales libc is not aware of. for other categories, names which are not successfully loaded as locales (which, at present, means all names) are treated as aliases for "C". setlocale never fails. locale settings are not yet used anywhere, so this commit should have no visible effects except for the contents of the string returned by setlocale.
2014-06-10simplify errno implementationRich Felker1-1/+0
the motivation for the errno_ptr field in the thread structure, which this commit removes, was to allow the main thread's errno to keep its address when lazy thread pointer initialization was used. &errno was evaluated prior to setting up the thread pointer and stored in errno_ptr for the main thread; subsequently created threads would have errno_ptr pointing to their own errno_val in the thread structure. since lazy initialization was removed, there is no need for this extra level of indirection; __errno_location can simply return the address of the thread's errno_val directly. this does cause &errno to change, but the change happens before entry to application code, and thus is not observable.
2014-06-10replace all remaining internal uses of pthread_self with __pthread_selfRich Felker1-2/+2
prior to version 1.1.0, the difference between pthread_self (the public function) and __pthread_self (the internal macro or inline function) was that the former would lazily initialize the thread pointer if it was not already initialized, whereas the latter would crash in this case. since lazy initialization is no longer supported, use of pthread_self no longer makes sense; it simply generates larger, slower code.
2014-03-24fix pointer type mismatch and misplacement of constRich Felker1-2/+2
2014-03-24always initialize thread pointer at program startRich Felker1-2/+9
this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2013-09-16omit CLONE_PARENT flag to clone in pthread_createRich Felker1-1/+1
CLONE_PARENT is not necessary (CLONE_THREAD provides all the useful parts of it) and Linux treats CLONE_PARENT as an error in certain situations, without noticing that it would be a no-op due to CLONE_THREAD. this error case prevents, for example, use of a multi-threaded init process and certain usages with containers.
2013-09-16use symbolic names for clone flags in pthread_createRich Felker1-2/+5