Age | Commit message (Collapse) | Author | Files | Lines |
|
the hard problem here is unlinking threads from a list when they exit
without creating a window of inconsistency where the kernel task for a
thread still exists and is still executing instructions in userspace,
but is not reflected in the list. the magic solution here is getting
rid of per-thread exit futex addresses (set_tid_address), and instead
using the exit futex to unlock the global thread list.
since pthread_join can no longer see the thread enter a detach_state
of EXITED (which depended on the exit futex address pointing to the
detach_state), it must now observe the unlocking of the thread list
lock before it can unmap the joined thread and return. it doesn't
actually have to take the lock. for this, a __tl_sync primitive is
offered, with a signature that will allow it to be enhanced for quick
return even under contention on the lock, if needed. for now, the
exiting thread always performs a futex wake on its detach_state. a
future change could optimize this out except when there is already a
joiner waiting.
initial/dynamic variants of detached state no longer need to be
tracked separately, since the futex address is always set to the
global list lock, not a thread-local address that could become invalid
on detached thread exit. all detached threads, however, must perform a
second sigprocmask syscall to block implementation-internal signals,
since locking the thread list with them already blocked is not
permissible.
the arch-independent C version of __unmapself no longer needs to take
a lock or setup its own futex address to release the lock, since it
must necessarily be called with the thread list lock already held,
guaranteeing exclusive access to the temporary stack.
changes to libc.threads_minus_1 no longer need to be atomic, since
they are guarded by the thread list lock. it is largely vestigial at
this point, and can be replaced with a cheaper boolean indicating
whether the process is multithreaded at some point in the future.
|
|
commits leading up to this one have moved the vast majority of
libc-internal interface declarations to appropriate internal headers,
allowing them to be type-checked and setting the stage to limit their
visibility. the ones that have not yet been moved are mostly
namespace-protected aliases for standard/public interfaces, which
exist to facilitate implementing plain C functions in terms of POSIX
functionality, or C or POSIX functionality in terms of extensions that
are not standardized. some don't quite fit this description, but are
"internally public" interfacs between subsystems of libc.
rather than create a number of newly-named headers to declare these
functions, and having to add explicit include directives for them to
every source file where they're needed, I have introduced a method of
wrapping the corresponding public headers.
parallel to the public headers in $(srcdir)/include, we now have
wrappers in $(srcdir)/src/include that come earlier in the include
path order. they include the public header they're wrapping, then add
declarations for namespace-protected versions of the same interfaces
and any "internally public" interfaces for the subsystem they
correspond to.
along these lines, the wrapper for features.h is now responsible for
the definition of the hidden, weak, and weak_alias macros. this means
source files will no longer need to include any special headers to
access these features.
over time, it is my expectation that the scope of what is "internally
public" will expand, reducing the number of source files which need to
include *_impl.h and related headers down to those which are actually
implementing the corresponding subsystems, not just using them.
|
|
previously, some accesses to the detached state (from pthread_join and
pthread_getattr_np) were unsynchronized; they were harmless in
programs with well-defined behavior, but ugly. other accesses (in
pthread_exit and pthread_detach) were synchronized by a poorly named
"exitlock", with an ad-hoc trylock operation on it open-coded in
pthread_detach, whose only purpose was establishing protocol for which
thread is responsible for deallocation of detached-thread resources.
instead, use an atomic detach_state and unify it with the futex used
to wait for thread exit. this eliminates 2 members from the pthread
structure, gets rid of the hackish lock usage, and makes rigorous the
trap added in commit 80bf5952551c002cf12d96deb145629765272db0 for
catching attempts to join detached threads. it should also make
attempt to detach an already-detached thread reliably trap.
|
|
In some places there has been a direct usage of the functions. Use the
macros consistently everywhere, such that it might be easier later on to
capture the fast path directly inside the macro and only have the call
overhead on the slow path.
|
|
A variant of this new lock algorithm has been presented at SAC'16, see
https://hal.inria.fr/hal-01304108. A full version of that paper is
available at https://hal.inria.fr/hal-01236734.
The main motivation of this is to improve on the safety of the basic lock
implementation in musl. This is achieved by squeezing a lock flag and a
congestion count (= threads inside the critical section) into a single
int. Thereby an unlock operation does exactly one memory
transfer (a_fetch_add) and never touches the value again, but still
detects if a waiter has to be woken up.
This is a fix of a use-after-free bug in pthread_detach that had
temporarily been patched. Therefore this patch also reverts
c1e27367a9b26b9baac0f37a12349fc36567c8b6
This is also the only place where internal knowledge of the lock
algorithm is used.
The main price for the improved safety is a little bit larger code.
Under high congestion, the scheduling behavior will be different
compared to the previous algorithm. In that case, a successful
put-to-sleep may appear out of order compared to the arrival in the
critical section.
|
|
calling __unlock on t->exitlock is not valid because __unlock reads
the waiters count after making the atomic store that could allow
pthread_exit to continue and unmap the thread's stack and the object t
points to. for now, inline the __unlock logic with an unconditional
futex wake operation so that the waiters count is not needed.
once __lock/__unlock have been made safe for self-synchronized
destruction, we could switch back to using them.
|
|
based on patch by Jens Gustedt.
the main difficulty here is handling the difference between start
function signatures and thread return types for C11 threads versus
POSIX threads. pointers to void are assumed to be able to represent
faithfully all values of int. the function pointer for the thread
start function is cast to an incorrect type for passing through
pthread_create, but is cast back to its correct type before calling so
that the behavior of the call is well-defined.
changes to the existing threads implementation were kept minimal to
reduce the risk of regressions, and duplication of code that carries
implementation-specific assumptions was avoided for ease and safety of
future maintenance.
|
|
The intent of this is to avoid name space pollution of the C threads
implementation.
This has two sides to it. First we have to provide symbols that wouldn't
pollute the name space for the C threads implementation. Second we have
to clean up some internal uses of POSIX functions such that they don't
implicitly drag in such symbols.
|
|
these could have caused memory corruption due to invalid accesses to
the next field. all should be fixed now; I found the errors with fgrep
-r '__lock(&', which is bogus since the argument should be an array.
|
|
after the thread unmaps its own stack/thread structure, the kernel,
performing child tid clear and futex wake, could clobber a new mapping
made at the same location as the just-removed thread's tid field.
disable kernel clearing of child tid to prevent this.
|
|
|
|
|