Age | Commit message (Collapse) | Author | Files | Lines |
|
this further reduces the number of source files which need to include
libc.h and thereby be potentially exposed to libc global state and
internals.
this will also facilitate further improvements like adding an inline
fast-path, if we want to do so later.
|
|
commits leading up to this one have moved the vast majority of
libc-internal interface declarations to appropriate internal headers,
allowing them to be type-checked and setting the stage to limit their
visibility. the ones that have not yet been moved are mostly
namespace-protected aliases for standard/public interfaces, which
exist to facilitate implementing plain C functions in terms of POSIX
functionality, or C or POSIX functionality in terms of extensions that
are not standardized. some don't quite fit this description, but are
"internally public" interfacs between subsystems of libc.
rather than create a number of newly-named headers to declare these
functions, and having to add explicit include directives for them to
every source file where they're needed, I have introduced a method of
wrapping the corresponding public headers.
parallel to the public headers in $(srcdir)/include, we now have
wrappers in $(srcdir)/src/include that come earlier in the include
path order. they include the public header they're wrapping, then add
declarations for namespace-protected versions of the same interfaces
and any "internally public" interfaces for the subsystem they
correspond to.
along these lines, the wrapper for features.h is now responsible for
the definition of the hidden, weak, and weak_alias macros. this means
source files will no longer need to include any special headers to
access these features.
over time, it is my expectation that the scope of what is "internally
public" will expand, reducing the number of source files which need to
include *_impl.h and related headers down to those which are actually
implementing the corresponding subsystems, not just using them.
|
|
In all cases this is just a change from two volatile int to one.
|
|
the leak was found by static analysis (reported by Alexander Monakov),
not tested/observed, but seems to have occured both when failing due
to O_EXCL, and in a race condition with O_CREAT but not O_EXCL where a
semaphore by the same name was created concurrently.
|
|
the memory model we use internally for atomics permits plain loads of
values which may be subject to concurrent modification without
requiring that a special load function be used. since a compiler is
free to make transformations that alter the number of loads or the way
in which loads are performed, the compiler is theoretically free to
break this usage. the most obvious concern is with atomic cas
constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be
transformed to a_cas(p,*p,f(*p)); where the latter is intended to show
multiple loads of *p whose resulting values might fail to be equal;
this would break the atomicity of the whole operation. but even more
fundamental breakage is possible.
with the changes being made now, objects that may be modified by
atomics are modeled as volatile, and the atomic operations performed
on them by other threads are modeled as asynchronous stores by
hardware which happens to be acting on the request of another thread.
such modeling of course does not itself address memory synchronization
between cores/cpus, but that aspect was already handled. this all
seems less than ideal, but it's the best we can do without mandating a
C11 compiler and using the C11 model for atomics.
in the case of pthread_once_t, the ABI type of the underlying object
is not volatile-qualified. so we are assuming that accessing the
object through a volatile-qualified lvalue via casts yields volatile
access semantics. the language of the C standard is somewhat unclear
on this matter, but this is an assumption the linux kernel also makes,
and seems to be the correct interpretation of the standard.
|
|
|
|
|
|
fstat should not fail under normal circumstances, so this fix is
mostly theoretical.
|
|
also fix one minor bug: failure to free the early-reserved slot when
the semaphore later found to already be mapped.
|
|
this function was overly complicated and not even obviously correct.
avoid using openat/linkat just like in shm_open, and instead expand
pathname using code shared with shm_open. remove bogus (and dangerous,
with priorities) use of spinlocks.
this commit also heavily streamlines the code and ensures there are no
failure cases that can happen after a new semaphore has been created
in the filesystem, since that case is unreportable.
|
|
this did not matter because we don't yet treat process-shared special.
when private futex support is added, however, it will matter.
|
|
|
|
|
|
|
|
multiple opens of the same named semaphore must return the same
pointer, and only the last close can unmap it. thus the ugly global
state keeping track of mappings. the maximum number of distinct named
semaphores that can be opened is limited sufficiently small that the
linear searches take trivial time, especially compared to the syscall
overhead of these functions.
|
|
|