Age | Commit message (Collapse) | Author | Files | Lines |
|
using swap has a race condition: the waiters must be added to the
mutex waiter count *before* they are taken off the cond var waiter
count, or wake events can be lost.
|
|
|
|
somehow i forgot that normal-type mutexes don't store the owner tid.
|
|
this avoids the "stampede effect" where pthread_cond_broadcast would
result in all waiters waking up simultaneously, only to immediately
contend for the mutex and go back to sleep.
|
|
previously, a waiter could miss the 1->0 transition of block if
another thread set block to 1 again after the signal function set
block to 0. we now use the caller's thread id as a unique token to
store in block, which no other thread will ever write there. this
ensures that if block still contains the tid, no signal has occurred.
spurious wakeups will of course occur whenever there is a spurious
return from the futex wait and another thread has begun waiting on the
cond var. this should be a rare occurrence except perhaps in the
presence of interrupting signal handlers.
signal/bcast operations have been improved by noting that they need
not avoid inspecting the cond var's memory after changing the futex
value. because the standard allows spurious wakeups, there is no way
for an application to distinguish between a spurious wakeup just
before another thread called signal/bcast, and the deliberate wakeup
resulting from the signal/bcast call. thus the woken thread must
assume that the signalling thread may still be waiting to act on the
cond var, and therefore it cannot destroy/unmap the cond var.
|
|
it's amazing none of the conformance tests i've run even bothered to
check whether something so basic works...
|
|
this port assumes eabi calling conventions, eabi linux syscall
convention, and presence of the kernel helpers at 0xffff0f?0 needed
for threads support. otherwise it makes very few assumptions, and the
code should work even on armv4 without thumb support, as well as on
systems with thumb interworking. the bits headers declare this a
little endian system, but as far as i can tell the code should work
equally well on big endian.
some small details are probably broken; so far, testing has been
limited to qemu/aboriginal linux.
|
|
several things are changed. first, i have removed the old __uniclone
function signature and replaced it with the "standard" linux
__clone/clone signature. this was necessary to expose clone to
applications anyway, and it makes it easier to port __clone to new
archs, since it's now testable independently of pthread_create.
secondly, i have removed all references to the ugly ldt descriptor
structure (i386 only) from the c code and pthread structure. in places
where it is needed, it is now created on the stack just when it's
needed, in assembly code. thus, the i386 __clone function takes the
desired thread pointer as its argument, rather than an ldt descriptor
pointer, just like on all other sane archs. this should not affect
applications since there is really no way an application can use clone
with threads/tls in a way that doesn't horribly conflict with and
clobber the underlying implementation's use. applications are expected
to use clone only for creating actual processes, possibly with new
namespace features and whatnot.
|
|
eventually we may have a working "generic" implementation for archs
that don't need anything special. in any case, the goal of having
stubs like this is to allow early testing of new ports before all the
details needed for threads have been filled in. more functions like
this will follow.
|
|
|
|
|
|
|
|
on spurious wakeups/returns from __timedwait, pthread_join would
"succeed" and unmap the thread's stack while it was still running. at
best this would lead to SIGSEGV when the thread resumed execution, but
in the worst case, the thread would later resume executing on top of
another new thread's stack mapped at the same address.
spent about 4 hours tracking this bug down, chasing rare
difficult-to-reproduce stack corruption in a stress test program.
still no idea *what* caused the spurious wakeups; i suspect it's a
kernel bug.
|
|
this seeme to be the bug that prevented enabling of private futex
support. i'm going to hold off on switching to private futexes until
after the next release, and until i get a chance to audit all
wait/wake calls to make sure they're using the correct private
argument, but with this change it should be safe to enable private
futex support.
|
|
this is not strictly required by the standard, but without it, there
is a race condition where cancellation arriving just before async
cancellation is enabled might not be acted upon. it is impossible for
a conforming application to work around this race condition since
calling pthread_testcancel after setting async cancellation mode is
not allowed (pthread_testcancel is not specified to be
async-cancel-safe). thus the implementation should be responsible for
eliminating the race, from a quality-of-implementation standpoint.
|
|
no sense bloating apps with a function call for an equality comparison...
|
|
this is a "nonstandard" function that was "rejected" by POSIX, but
nonetheless had its behavior documented in the POSIX rationale for
fork. it's present on solaris and possibly some other systems, and
duplicates the whole calling process, not just a single thread. glibc
does not have this function. it should not be used in programs
intending to be portable, but may be useful for testing,
checkpointing, etc. and it's an interesting (and quite small) example
of the usefulness of the __synccall framework originally written to
work around deficiencies in linux's setuid syscall.
|
|
fix up clone signature to match the actual behavior. the new
__syncall_wait function allows a __synccall callback to wait for other
threads to continue without returning, so that it can resume action
after the caller finishes. this interface could be made significantly
more general/powerful with minimal effort, but i'll wait to do that
until it's actually useful for something.
|
|
|
|
the new absolute-time-based wait kernelside was hard to get right and
basically just code duplication. it could only improve "performance"
when waiting, and even then, the improvement was just slight drop in
cpu usage during a wait.
actually, with vdso clock_gettime, the "old" way will be even faster
than the "new" way if the time has already expired, since it will not
invoke any syscalls. it can determine entirely in userspace that it
needs to return ETIMEDOUT.
|
|
|
|
normally we allow cancellation to be acted upon when a syscall fails
with EINTR, since there is no useful status to report to the caller in
this case, and the signal that caused the interruption was almost
surely the cancellation request, anyway.
however, unlike all other syscalls, close has actually performed its
resource-deallocation function whenever it returns, even when it
returned an error. if we allow cancellation at this point, the caller
has no way of informing the program that the file descriptor was
closed, and the program may later try to close the file descriptor
again, possibly closing a different, newly-opened file.
the workaround looks ugly (special-casing one syscall), but it's
actually the case that close is the one and only syscall (at least
among cancellation points) with this ugly property.
|
|
|
|
|
|
cleanup push and pop are also no-ops if pthread_exit is not reachable.
this can make a big difference for library code which needs to protect
itself against cancellation, but which is unlikely to actually be used
in programs with threads/cancellation.
|
|
|
|
previously, pthread_cleanup_push/pop were pulling in all of
pthread_create due to dependency on the __pthread_unwind_next
function. this was not needed, as cancellation cleanup handlers can
never be called unless pthread_exit or pthread_cancel is reachable.
|
|
like mutexes and semaphores, rwlocks suffered from a race condition
where the unlock operation could access the lock memory after another
thread successfully obtained the lock (and possibly destroyed or
unmapped the object). this has been fixed in the same way it was fixed
for other lock types.
in addition, the previous implementation favored writers over readers.
in the absence of other considerations, that is the best behavior for
rwlocks, and posix explicitly allows it. however posix also requires
read locks to be recursive. if writers are favored, any attempt to
obtain a read lock while a writer is waiting for the lock will fail,
causing "recursive" read locks to deadlock. this can be avoided by
keeping track of which threads already hold read locks, but doing so
requires unbounded memory usage, and there must be a fallback case
that favors readers in case memory allocation failed. and all of this
must be synchronized. the cost, complexity, and risk of errors in
getting it right is too great, so we simply favor readers.
tracking of the owner of write locks has been removed, as it was not
useful for anything. it could allow deadlock detection, but it's not
clear to me that returning EDEADLK (which a buggy program is likely to
ignore) is better than deadlocking; at least the latter behavior
prevents further data corruption. a correct program cannot invoke this
situation anyway.
the reader count and write lock state, as well as the "last minute"
waiter flag have all been combined into a single atomic lock. this
means all state transitions for the lock are atomic compare-and-swap
operations. this makes establishing correctness much easier and may
improve performance.
finally, some code duplication has been cleaned up. more is called
for, especially the standard __timedwait idiom repeated in all locks.
|
|
it's unclear whether EINVAL or ENOSYS is used when the operation is
not supported, so check for both...
|
|
futex returns EINVAL, not ENOSYS, when op is not supported.
unfortunately this looks just like EINVAL from other causes, and we
end up running the fallback code and getting EINVAL again. fortunately
this case should be rare since correct code should not generate EINVAL
anyway.
|
|
this dec used to be performed by the cancellation handler, which was
called when popped.
|
|
new features:
- FUTEX_WAIT_BITSET op will be used for timed waits if available. this
saves a call to clock_gettime.
- error checking for the timespec struct is now inside __timedwait so
it doesn't need to be duplicated everywhere. cond_timedwait still
needs to duplicate it to avoid unlocking the mutex, though.
- pushing and popping the cancellation handler is delegated to
__timedwait, and cancellable/non-cancellable waits are unified.
|
|
this change is needed to fix a race condition and ensure that it's
possible to unlock and destroy or unmap the mutex as soon as
pthread_mutex_lock succeeds. POSIX explicitly gives such an example in
the rationale and requires an implementation to allow such usage.
|
|
sigaddset was not accepting SIGCANCEL as a valid signal number.
|
|
the race condition these changes address is described in glibc bug
report number 12674:
http://sourceware.org/bugzilla/show_bug.cgi?id=12674
up until now, musl has shared the bug, and i had not been able to
figure out how to eliminate it. in short, the problem is that it's not
valid for sem_post to inspect the waiters count after incrementing the
semaphore value, because another thread may have already successfully
returned from sem_wait, (rightly) deemed itself the only remaining
user of the semaphore, and chosen to destroy and free it (or unmap the
shared memory it's stored in). POSIX is not explicit in blessing this
usage, but it gives a very explicit analogous example with mutexes
(which, in musl and glibc, also suffer from the same race condition
bug) in the rationale for pthread_mutex_destroy.
the new semaphore implementation augments the waiter count with a
redundant waiter indication in the semaphore value itself,
representing the presence of "last minute" waiters that may have
arrived after sem_post read the waiter count. this allows sem_post to
read the waiter count prior to incrementing the semaphore value,
rather than after incrementing it, so as to avoid accessing the
semaphore memory whatsoever after the increment takes place.
a similar, but much simpler, fix should be possible for mutexes and
other locking primitives whose usage rules are stricter than
semaphores.
|
|
it's nicer for the function that doesn't use errno to be independent,
and have the other one call it. saves some time and avoids clobbering
errno.
|
|
previously, stdio used spinlocks, which would be unacceptable if we
ever add support for thread priorities, and which yielded
pathologically bad performance if an application attempted to use
flockfile on a key file as a major/primary locking mechanism.
i had held off on making this change for fear that it would hurt
performance in the non-threaded case, but actually support for
recursive locking had already inflicted that cost. by having the
internal locking functions store a flag indicating whether they need
to perform unlocking, rather than using the actual recursive lock
counter, i was able to combine the conditionals at unlock time,
eliminating any additional cost, and also avoid a nasty corner case
where a huge number of calls to ftrylockfile could cause deadlock
later at the point of internal locking.
this commit also fixes some issues with usage of pthread_self
conflicting with __attribute__((const)) which resulted in crashes with
some compiler versions/optimizations, mainly in flockfile prior to
pthread_create.
|
|
|
|
changing credentials in a multi-threaded program is extremely
difficult on linux because it requires synchronizing the change
between all threads, which have their own thread-local credentials on
the kernel side. this is further complicated by the fact that changing
the real uid can fail due to exceeding RLIMIT_NPROC, making it
possible that the syscall will succeed in some threads but fail in
others.
the old __rsyscall approach being replaced was robust in that it would
report failure if any one thread failed, but in this case, the program
would be left in an inconsistent state where individual threads might
have different uid. (this was not as bad as glibc, which would
sometimes even fail to report the failure entirely!)
the new approach being committed refuses to change real user id when
it cannot temporarily set the rlimit to infinity. this is completely
POSIX conformant since POSIX does not require an implementation to
allow real-user-id changes for non-privileged processes whatsoever.
still, setting the real uid can fail due to memory allocation in the
kernel, but this can only happen if there is not already a cached
object for the target user. thus, we forcibly serialize the syscalls
attempts, and fail the entire operation on the first failure. this
*should* lead to an all-or-nothing success/failure result, but it's
still fragile and highly dependent on kernel developers not breaking
things worse than they're already broken.
ideally linux will eventually add a CLONE_USERCRED flag that would
give POSIX conformant credential changes without any hacks from
userspace, and all of this code would become redundant and could be
removed ~10 years down the line when everyone has abandoned the old
broken kernels. i'm not holding my breath...
|
|
|
|
this seems to be necessary to make the linker accept the functions in
a shared library (perhaps to generate PLT entries?)
strictly speaking libc-internal asm should not need it. i might clean
that up later.
|
|
if thread id was reused by the kernel between the time pthread_kill
read it from the userspace pthread_t object and the time of the tgkill
syscall, a signal could be sent to the wrong thread. the tgkill
syscall was supposed to prevent this race (versus the old tkill
syscall) but it can't; it can only help in the case where the tid is
reused in a different process, but not when the tid is reused in the
same process.
the only solution i can see is an extra lock to prevent threads from
exiting while another thread is trying to pthread_kill them. it should
be very very cheap in the non-contended case.
|
|
previously a long-running dtor could cause pthread_detach to block.
|
|
|
|
these are useless and have caused problems for users trying to build
with non-gnu tools like tcc's assembler.
|
|
there is a resource limit of 0 bits to store the concurrency level
requested. thus any positive level exceeds a resource limit, resulting
in EAGAIN. :-)
|
|
|
|
|
|
the new approach relies on the fact that the only ways to create
sigset_t objects without invoking UB are to use the sig*set()
functions, or from the masks returned by sigprocmask, sigaction, etc.
or in the ucontext_t argument to a signal handler. thus, as long as
sigfillset and sigaddset avoid adding the "protected" signals, there
is no way the application will ever obtain a sigset_t including these
bits, and thus no need to add the overhead of checking/clearing them
when sigprocmask or sigaction is called.
note that the old code actually *failed* to remove the bits from
sa_mask when sigaction was called.
the new implementations are also significantly smaller, simpler, and
faster due to ignoring the useless "GNU HURD signals" 65-1024, which
are not used and, if there's any sanity in the world, never will be
used.
|
|
these should be tweaked according to testing. offhand i know 1000 is
too low and 5000 is likely to be sufficiently high. consider trying to
add futexes to file locking, too...
|