summaryrefslogtreecommitdiff
path: root/experimental/firefox-esr/fix-arm-atomics-grsec.patch
diff options
context:
space:
mode:
Diffstat (limited to 'experimental/firefox-esr/fix-arm-atomics-grsec.patch')
-rw-r--r--experimental/firefox-esr/fix-arm-atomics-grsec.patch306
1 files changed, 0 insertions, 306 deletions
diff --git a/experimental/firefox-esr/fix-arm-atomics-grsec.patch b/experimental/firefox-esr/fix-arm-atomics-grsec.patch
deleted file mode 100644
index 0eb58f093..000000000
--- a/experimental/firefox-esr/fix-arm-atomics-grsec.patch
+++ /dev/null
@@ -1,306 +0,0 @@
---- mozilla-release/ipc/chromium/src/base/atomicops_internals_arm_gcc.h.orig
-+++ mozilla-release/ipc/chromium/src/base/atomicops_internals_arm_gcc.h
-@@ -12,43 +35,194 @@
- namespace base {
- namespace subtle {
-
--// 0xffff0fc0 is the hard coded address of a function provided by
--// the kernel which implements an atomic compare-exchange. On older
--// ARM architecture revisions (pre-v6) this may be implemented using
--// a syscall. This address is stable, and in active use (hard coded)
--// by at least glibc-2.7 and the Android C library.
--typedef Atomic32 (*LinuxKernelCmpxchgFunc)(Atomic32 old_value,
-- Atomic32 new_value,
-- volatile Atomic32* ptr);
--LinuxKernelCmpxchgFunc pLinuxKernelCmpxchg __attribute__((weak)) =
-- (LinuxKernelCmpxchgFunc) 0xffff0fc0;
-+// Memory barriers on ARM are funky, but the kernel is here to help:
-+//
-+// * ARMv5 didn't support SMP, there is no memory barrier instruction at
-+// all on this architecture, or when targeting its machine code.
-+//
-+// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
-+// writing a random value to a very specific coprocessor register.
-+//
-+// * On ARMv7, the "dmb" instruction is used to perform a full memory
-+// barrier (though writing to the co-processor will still work).
-+// However, on single core devices (e.g. Nexus One, or Nexus S),
-+// this instruction will take up to 200 ns, which is huge, even though
-+// it's completely un-needed on these devices.
-+//
-+// * There is no easy way to determine at runtime if the device is
-+// single or multi-core. However, the kernel provides a useful helper
-+// function at a fixed memory address (0xffff0fa0), which will always
-+// perform a memory barrier in the most efficient way. I.e. on single
-+// core devices, this is an empty function that exits immediately.
-+// On multi-core devices, it implements a full memory barrier.
-+//
-+// * This source could be compiled to ARMv5 machine code that runs on a
-+// multi-core ARMv6 or ARMv7 device. In this case, memory barriers
-+// are needed for correct execution. Always call the kernel helper, even
-+// when targeting ARMv5TE.
-+//
-
--typedef void (*LinuxKernelMemoryBarrierFunc)(void);
--LinuxKernelMemoryBarrierFunc pLinuxKernelMemoryBarrier __attribute__((weak)) =
-- (LinuxKernelMemoryBarrierFunc) 0xffff0fa0;
-+inline void MemoryBarrier() {
-+#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
-+ defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__)
-+ __asm__ __volatile__("dmb ish" ::: "memory");
-+#elif defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
-+ defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
-+ defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
-+ __asm__ __volatile__("mcr p15,0,r0,c7,c10,5" ::: "memory");
-+#elif defined(__linux__) || defined(__ANDROID__)
-+ // Note: This is a function call, which is also an implicit compiler barrier.
-+ typedef void (*KernelMemoryBarrierFunc)();
-+ ((KernelMemoryBarrierFunc)0xffff0fa0)();
-+#error MemoryBarrier() is not implemented on this platform.
-+#endif
-+}
-
-+// An ARM toolchain would only define one of these depending on which
-+// variant of the target architecture is being used. This tests against
-+// any known ARMv6 or ARMv7 variant, where it is possible to directly
-+// use ldrex/strex instructions to implement fast atomic operations.
-+#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
-+ defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
-+ defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
-+ defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
-+ defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)
-
- inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
- Atomic32 old_value,
- Atomic32 new_value) {
-- Atomic32 prev_value = *ptr;
-+ Atomic32 prev_value;
-+ int reloop;
- do {
-- if (!pLinuxKernelCmpxchg(old_value, new_value,
-- const_cast<Atomic32*>(ptr))) {
-- return old_value;
-- }
-- prev_value = *ptr;
-- } while (prev_value == old_value);
-+ // The following is equivalent to:
-+ //
-+ // prev_value = LDREX(ptr)
-+ // reloop = 0
-+ // if (prev_value != old_value)
-+ // reloop = STREX(ptr, new_value)
-+ __asm__ __volatile__(" ldrex %0, [%3]\n"
-+ " mov %1, #0\n"
-+ " cmp %0, %4\n"
-+#ifdef __thumb2__
-+ " it eq\n"
-+#endif
-+ " strexeq %1, %5, [%3]\n"
-+ : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
-+ : "r"(ptr), "r"(old_value), "r"(new_value)
-+ : "cc", "memory");
-+ } while (reloop != 0);
- return prev_value;
- }
-
-+inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
-+ Atomic32 old_value,
-+ Atomic32 new_value) {
-+ Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
-+ MemoryBarrier();
-+ return result;
-+}
-+
-+inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
-+ Atomic32 old_value,
-+ Atomic32 new_value) {
-+ MemoryBarrier();
-+ return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
-+}
-+
-+inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
-+ Atomic32 increment) {
-+ Atomic32 value;
-+ int reloop;
-+ do {
-+ // Equivalent to:
-+ //
-+ // value = LDREX(ptr)
-+ // value += increment
-+ // reloop = STREX(ptr, value)
-+ //
-+ __asm__ __volatile__(" ldrex %0, [%3]\n"
-+ " add %0, %0, %4\n"
-+ " strex %1, %0, [%3]\n"
-+ : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
-+ : "r"(ptr), "r"(increment)
-+ : "cc", "memory");
-+ } while (reloop);
-+ return value;
-+}
-+
-+inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
-+ Atomic32 increment) {
-+ // TODO(digit): Investigate if it's possible to implement this with
-+ // a single MemoryBarrier() operation between the LDREX and STREX.
-+ // See http://crbug.com/246514
-+ MemoryBarrier();
-+ Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
-+ MemoryBarrier();
-+ return result;
-+}
-+
- inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
- Atomic32 new_value) {
- Atomic32 old_value;
-+ int reloop;
- do {
-+ // old_value = LDREX(ptr)
-+ // reloop = STREX(ptr, new_value)
-+ __asm__ __volatile__(" ldrex %0, [%3]\n"
-+ " strex %1, %4, [%3]\n"
-+ : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
-+ : "r"(ptr), "r"(new_value)
-+ : "cc", "memory");
-+ } while (reloop != 0);
-+ return old_value;
-+}
-+
-+// This tests against any known ARMv5 variant.
-+#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
-+ defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
-+
-+// The kernel also provides a helper function to perform an atomic
-+// compare-and-swap operation at the hard-wired address 0xffff0fc0.
-+// On ARMv5, this is implemented by a special code path that the kernel
-+// detects and treats specially when thread pre-emption happens.
-+// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
-+//
-+// Note that this always perform a full memory barrier, there is no
-+// need to add calls MemoryBarrier() before or after it. It also
-+// returns 0 on success, and 1 on exit.
-+//
-+// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
-+// use newer kernel revisions, so this should not be a concern.
-+namespace {
-+
-+inline int LinuxKernelCmpxchg(Atomic32 old_value,
-+ Atomic32 new_value,
-+ volatile Atomic32* ptr) {
-+ typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
-+ return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
-+}
-+
-+} // namespace
-+
-+inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
-+ Atomic32 old_value,
-+ Atomic32 new_value) {
-+ Atomic32 prev_value;
-+ for (;;) {
-+ prev_value = *ptr;
-+ if (prev_value != old_value)
-+ return prev_value;
-+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
-+ return old_value;
-+ }
-+}
-+
-+inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
-+ Atomic32 new_value) {
-+ Atomic32 old_value;
-+ do {
- old_value = *ptr;
-- } while (pLinuxKernelCmpxchg(old_value, new_value,
-- const_cast<Atomic32*>(ptr)));
-+ } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
- return old_value;
- }
-
-@@ -63,36 +237,57 @@
- // Atomic exchange the old value with an incremented one.
- Atomic32 old_value = *ptr;
- Atomic32 new_value = old_value + increment;
-- if (pLinuxKernelCmpxchg(old_value, new_value,
-- const_cast<Atomic32*>(ptr)) == 0) {
-+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
- // The exchange took place as expected.
- return new_value;
- }
- // Otherwise, *ptr changed mid-loop and we need to retry.
- }
--
- }
-
- inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
- Atomic32 old_value,
- Atomic32 new_value) {
-- return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
-+ Atomic32 prev_value;
-+ for (;;) {
-+ prev_value = *ptr;
-+ if (prev_value != old_value) {
-+ // Always ensure acquire semantics.
-+ MemoryBarrier();
-+ return prev_value;
-+ }
-+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
-+ return old_value;
-+ }
- }
-
- inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
- Atomic32 old_value,
- Atomic32 new_value) {
-- return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
-+ // This could be implemented as:
-+ // MemoryBarrier();
-+ // return NoBarrier_CompareAndSwap();
-+ //
-+ // But would use 3 barriers per succesful CAS. To save performance,
-+ // use Acquire_CompareAndSwap(). Its implementation guarantees that:
-+ // - A succesful swap uses only 2 barriers (in the kernel helper).
-+ // - An early return due to (prev_value != old_value) performs
-+ // a memory barrier with no store, which is equivalent to the
-+ // generic implementation above.
-+ return Acquire_CompareAndSwap(ptr, old_value, new_value);
- }
-
-+#else
-+# error "Your CPU's ARM architecture is not supported yet"
-+#endif
-+
-+// NOTE: Atomicity of the following load and store operations is only
-+// guaranteed in case of 32-bit alignement of |ptr| values.
-+
- inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
- *ptr = value;
- }
-
--inline void MemoryBarrier() {
-- pLinuxKernelMemoryBarrier();
--}
--
- inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
- *ptr = value;
- MemoryBarrier();
-@@ -103,9 +298,7 @@
- *ptr = value;
- }
-
--inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
-- return *ptr;
--}
-+inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }
-
- inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
- Atomic32 value = *ptr;
-@@ -118,7 +311,6 @@
- return *ptr;
- }
-
--} // namespace base::subtle
--} // namespace base
-+} } // namespace base::subtle
-
- #endif // BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_