diff options
author | Michael Kuron <mkuron@users.noreply.github.com> | 2016-11-05 20:19:19 +0100 |
---|---|---|
committer | Todd Gamblin <tgamblin@llnl.gov> | 2016-11-05 12:19:19 -0700 |
commit | 6f2c05b888a410366b9fc8e7d0e92895bcd1cff9 (patch) | |
tree | 2332300b197effd8da3dc80ea10387ca779ec7ef /var | |
parent | 6c1113769b55c87079f125df34aee22621bbaa72 (diff) | |
download | spack-6f2c05b888a410366b9fc8e7d0e92895bcd1cff9.tar.gz spack-6f2c05b888a410366b9fc8e7d0e92895bcd1cff9.tar.bz2 spack-6f2c05b888a410366b9fc8e7d0e92895bcd1cff9.tar.xz spack-6f2c05b888a410366b9fc8e7d0e92895bcd1cff9.zip |
Add PFFT parallel FFT package (#2255)
* Add PFFT parallel FFT package
* pfft: fix non-double precision
Diffstat (limited to 'var')
-rw-r--r-- | var/spack/repos/builtin/packages/fftw/package.py | 12 | ||||
-rw-r--r-- | var/spack/repos/builtin/packages/fftw/pfft-3.3.4.patch | 865 | ||||
-rw-r--r-- | var/spack/repos/builtin/packages/fftw/pfft-3.3.5.patch | 858 | ||||
-rw-r--r-- | var/spack/repos/builtin/packages/pfft/package.py | 64 |
4 files changed, 1799 insertions, 0 deletions
diff --git a/var/spack/repos/builtin/packages/fftw/package.py b/var/spack/repos/builtin/packages/fftw/package.py index 3069e39226..53b635ba7c 100644 --- a/var/spack/repos/builtin/packages/fftw/package.py +++ b/var/spack/repos/builtin/packages/fftw/package.py @@ -39,6 +39,9 @@ class Fftw(Package): version('3.3.5', '6cc08a3b9c7ee06fdd5b9eb02e06f569') version('3.3.4', '2edab8c06b24feeb3b82bbb3ebf3e7b3') + patch('pfft-3.3.5.patch', when="@3.3.5+pfft_patches", level=0) + patch('pfft-3.3.4.patch', when="@3.3.4+pfft_patches", level=0) + variant( 'float', default=True, description='Produces a single precision version of the library') @@ -51,8 +54,13 @@ class Fftw(Package): '(works only with GCC and libquadmath)') variant('openmp', default=False, description="Enable OpenMP support.") variant('mpi', default=False, description='Activate MPI support') + variant( + 'pfft_patches', default=False, + description='Add extra transpose functions for PFFT compatibility') depends_on('mpi', when='+mpi') + depends_on('automake', type='build', when='+pfft_patches') + depends_on('autoconf', type='build', when='+pfft_patches') # TODO : add support for architecture specific optimizations as soon as # targets are supported @@ -77,6 +85,10 @@ class Fftw(Package): if '+mpi' in spec: options.append('--enable-mpi') + if '+pfft_patches' in spec: + autoreconf = which('autoreconf') + autoreconf('-ifv') + configure(*options) make() if self.run_tests: diff --git a/var/spack/repos/builtin/packages/fftw/pfft-3.3.4.patch b/var/spack/repos/builtin/packages/fftw/pfft-3.3.4.patch new file mode 100644 index 0000000000..4740a60ae4 --- /dev/null +++ b/var/spack/repos/builtin/packages/fftw/pfft-3.3.4.patch @@ -0,0 +1,865 @@ +--- mpi/conf.c 2014-03-04 19:41:03.000000000 +0100 ++++ mpi/conf.c 2015-09-05 05:53:19.085516467 +0200 +@@ -29,6 +29,8 @@ static const solvtab s = + SOLVTAB(XM(transpose_pairwise_register)), + SOLVTAB(XM(transpose_alltoall_register)), + SOLVTAB(XM(transpose_recurse_register)), ++ SOLVTAB(XM(transpose_pairwise_transposed_register)), ++ SOLVTAB(XM(transpose_alltoall_transposed_register)), + SOLVTAB(XM(dft_rank_geq2_register)), + SOLVTAB(XM(dft_rank_geq2_transposed_register)), + SOLVTAB(XM(dft_serial_register)), + +--- mpi/Makefile.am 2013-03-18 13:10:45.000000000 +0100 ++++ mpi/Makefile.am 2015-09-05 05:53:19.084516437 +0200 +@@ -16,6 +16,7 @@ BUILT_SOURCES = fftw3-mpi.f03.in fftw3-m + CLEANFILES = fftw3-mpi.f03 fftw3l-mpi.f03 + + TRANSPOSE_SRC = transpose-alltoall.c transpose-pairwise.c transpose-recurse.c transpose-problem.c transpose-solve.c mpi-transpose.h ++TRANSPOSE_SRC += transpose-alltoall-transposed.c transpose-pairwise-transposed.c + DFT_SRC = dft-serial.c dft-rank-geq2.c dft-rank-geq2-transposed.c dft-rank1.c dft-rank1-bigvec.c dft-problem.c dft-solve.c mpi-dft.h + RDFT_SRC = rdft-serial.c rdft-rank-geq2.c rdft-rank-geq2-transposed.c rdft-rank1-bigvec.c rdft-problem.c rdft-solve.c mpi-rdft.h + RDFT2_SRC = rdft2-serial.c rdft2-rank-geq2.c rdft2-rank-geq2-transposed.c rdft2-problem.c rdft2-solve.c mpi-rdft2.h + +--- mpi/mpi-transpose.h 2014-03-04 19:41:03.000000000 +0100 ++++ mpi/mpi-transpose.h 2015-09-05 05:53:19.085516467 +0200 +@@ -59,3 +59,5 @@ int XM(mkplans_posttranspose)(const prob + void XM(transpose_pairwise_register)(planner *p); + void XM(transpose_alltoall_register)(planner *p); + void XM(transpose_recurse_register)(planner *p); ++void XM(transpose_pairwise_transposed_register)(planner *p); ++void XM(transpose_alltoall_transposed_register)(planner *p); + +--- mpi/transpose-alltoall-transposed.c 1970-01-01 01:00:00.000000000 +0100 ++++ mpi/transpose-alltoall-transposed.c 2015-09-05 05:53:19.085516467 +0200 +@@ -0,0 +1,280 @@ ++/* ++ * Copyright (c) 2003, 2007-11 Matteo Frigo ++ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology ++ * Copyright (c) 2012 Michael Pippig ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ++ * ++ */ ++ ++/* plans for distributed out-of-place transpose using MPI_Alltoall, ++ and which destroy the input array (also if TRANSPOSED_IN is used) */ ++ ++#include "mpi-transpose.h" ++#include <string.h> ++ ++typedef struct { ++ solver super; ++ int copy_transposed_out; /* whether to copy the output for TRANSPOSED_OUT, ++ which makes the first transpose out-of-place ++ but costs an extra copy and requires us ++ to destroy the input */ ++} S; ++ ++typedef struct { ++ plan_mpi_transpose super; ++ ++ plan *cld1, *cld2, *cld2rest, *cld3; ++ ++ MPI_Comm comm; ++ int *send_block_sizes, *send_block_offsets; ++ int *recv_block_sizes, *recv_block_offsets; ++ ++ INT rest_Ioff, rest_Ooff; ++ ++ int equal_blocks; ++} P; ++ ++/* transpose locally to get contiguous chunks ++ this may take two transposes if the block sizes are unequal ++ (3 subplans, two of which operate on disjoint data) */ ++static void apply_pretranspose( ++ const P *ego, R *I, R *O ++ ) ++{ ++ plan_rdft *cld2, *cld2rest, *cld3; ++ ++ cld3 = (plan_rdft *) ego->cld3; ++ if (cld3) ++ cld3->apply(ego->cld3, O, O); ++ /* else TRANSPOSED_IN is true and user wants I transposed */ ++ ++ cld2 = (plan_rdft *) ego->cld2; ++ cld2->apply(ego->cld2, I, O); ++ cld2rest = (plan_rdft *) ego->cld2rest; ++ if (cld2rest) { ++ cld2rest->apply(ego->cld2rest, ++ I + ego->rest_Ioff, O + ego->rest_Ooff); ++ } ++} ++ ++static void apply(const plan *ego_, R *I, R *O) ++{ ++ const P *ego = (const P *) ego_; ++ plan_rdft *cld1 = (plan_rdft *) ego->cld1; ++ ++ if (cld1) { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, O); ++ ++ /* transpose chunks globally */ ++ if (ego->equal_blocks) ++ MPI_Alltoall(O, ego->send_block_sizes[0], FFTW_MPI_TYPE, ++ I, ego->recv_block_sizes[0], FFTW_MPI_TYPE, ++ ego->comm); ++ else ++ MPI_Alltoallv(O, ego->send_block_sizes, ego->send_block_offsets, ++ FFTW_MPI_TYPE, ++ I, ego->recv_block_sizes, ego->recv_block_offsets, ++ FFTW_MPI_TYPE, ++ ego->comm); ++ ++ /* transpose locally to get non-transposed output */ ++ cld1->apply(ego->cld1, I, O); ++ } /* else TRANSPOSED_OUT is true and user wants O transposed */ ++ else { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, I); ++ ++ /* transpose chunks globally */ ++ if (ego->equal_blocks) ++ MPI_Alltoall(I, ego->send_block_sizes[0], FFTW_MPI_TYPE, ++ O, ego->recv_block_sizes[0], FFTW_MPI_TYPE, ++ ego->comm); ++ else ++ MPI_Alltoallv(I, ego->send_block_sizes, ego->send_block_offsets, ++ FFTW_MPI_TYPE, ++ O, ego->recv_block_sizes, ego->recv_block_offsets, ++ FFTW_MPI_TYPE, ++ ego->comm); ++ } ++} ++ ++static int applicable(const S *ego, const problem *p_, ++ const planner *plnr) ++{ ++ /* in contrast to transpose-alltoall this algorithm can not preserve the input, ++ * since we need at least one transpose before the (out-of-place) Alltoall */ ++ const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; ++ return (1 ++ && p->I != p->O ++ && (!NO_DESTROY_INPUTP(plnr)) ++ && ((p->flags & TRANSPOSED_OUT) || !ego->copy_transposed_out) ++ && ONLY_TRANSPOSEDP(p->flags) ++ ); ++} ++ ++static void awake(plan *ego_, enum wakefulness wakefulness) ++{ ++ P *ego = (P *) ego_; ++ X(plan_awake)(ego->cld1, wakefulness); ++ X(plan_awake)(ego->cld2, wakefulness); ++ X(plan_awake)(ego->cld2rest, wakefulness); ++ X(plan_awake)(ego->cld3, wakefulness); ++} ++ ++static void destroy(plan *ego_) ++{ ++ P *ego = (P *) ego_; ++ X(ifree0)(ego->send_block_sizes); ++ MPI_Comm_free(&ego->comm); ++ X(plan_destroy_internal)(ego->cld3); ++ X(plan_destroy_internal)(ego->cld2rest); ++ X(plan_destroy_internal)(ego->cld2); ++ X(plan_destroy_internal)(ego->cld1); ++} ++ ++static void print(const plan *ego_, printer *p) ++{ ++ const P *ego = (const P *) ego_; ++ p->print(p, "(mpi-transpose-alltoall-transposed%s%(%p%)%(%p%)%(%p%)%(%p%))", ++ ego->equal_blocks ? "/e" : "", ++ ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); ++} ++ ++static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) ++{ ++ const S *ego = (const S *) ego_; ++ const problem_mpi_transpose *p; ++ P *pln; ++ plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; ++ INT b, bt, vn, rest_Ioff, rest_Ooff; ++ R *O; ++ int *sbs, *sbo, *rbs, *rbo; ++ int pe, my_pe, n_pes; ++ int equal_blocks = 1; ++ static const plan_adt padt = { ++ XM(transpose_solve), awake, print, destroy ++ }; ++ ++ if (!applicable(ego, p_, plnr)) ++ return (plan *) 0; ++ ++ p = (const problem_mpi_transpose *) p_; ++ vn = p->vn; ++ ++ MPI_Comm_rank(p->comm, &my_pe); ++ MPI_Comm_size(p->comm, &n_pes); ++ ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ ++ if (p->flags & TRANSPOSED_OUT) { /* O stays transposed */ ++ if (ego->copy_transposed_out) { ++ cld1 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_1d) ++ (bt * p->nx * vn, 1, 1), ++ p->I, O = p->O), ++ 0, 0, NO_SLOW); ++ if (XM(any_true)(!cld1, p->comm)) goto nada; ++ } ++ else /* first transpose is in-place */ ++ O = p->I; ++ } ++ else { /* transpose nx x bt x vn -> bt x nx x vn */ ++ cld1 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_3d) ++ (bt, vn, p->nx * vn, ++ p->nx, bt * vn, vn, ++ vn, 1, 1), ++ p->I, O = p->O), ++ 0, 0, NO_SLOW); ++ if (XM(any_true)(!cld1, p->comm)) goto nada; ++ } ++ ++ if (XM(any_true)(!XM(mkplans_pretranspose)(p, plnr, p->I, O, my_pe, ++ &cld2, &cld2rest, &cld3, ++ &rest_Ioff, &rest_Ooff), ++ p->comm)) goto nada; ++ ++ ++ pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); ++ ++ pln->cld1 = cld1; ++ pln->cld2 = cld2; ++ pln->cld2rest = cld2rest; ++ pln->rest_Ioff = rest_Ioff; ++ pln->rest_Ooff = rest_Ooff; ++ pln->cld3 = cld3; ++ ++ MPI_Comm_dup(p->comm, &pln->comm); ++ ++ /* Compute sizes/offsets of blocks to send for all-to-all command. */ ++ sbs = (int *) MALLOC(4 * n_pes * sizeof(int), PLANS); ++ sbo = sbs + n_pes; ++ rbs = sbo + n_pes; ++ rbo = rbs + n_pes; ++ b = XM(block)(p->nx, p->block, my_pe); ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ for (pe = 0; pe < n_pes; ++pe) { ++ INT db, dbt; /* destination block sizes */ ++ db = XM(block)(p->nx, p->block, pe); ++ dbt = XM(block)(p->ny, p->tblock, pe); ++ if (db != p->block || dbt != p->tblock) ++ equal_blocks = 0; ++ ++ /* MPI requires type "int" here; apparently it ++ has no 64-bit API? Grrr. */ ++ sbs[pe] = (int) (b * dbt * vn); ++ sbo[pe] = (int) (pe * (b * p->tblock) * vn); ++ rbs[pe] = (int) (db * bt * vn); ++ rbo[pe] = (int) (pe * (p->block * bt) * vn); ++ } ++ pln->send_block_sizes = sbs; ++ pln->send_block_offsets = sbo; ++ pln->recv_block_sizes = rbs; ++ pln->recv_block_offsets = rbo; ++ pln->equal_blocks = equal_blocks; ++ ++ X(ops_zero)(&pln->super.super.ops); ++ if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); ++ if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); ++ if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); ++ if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); ++ /* FIXME: should MPI operations be counted in "other" somehow? */ ++ ++ return &(pln->super.super); ++ ++ nada: ++ X(plan_destroy_internal)(cld3); ++ X(plan_destroy_internal)(cld2rest); ++ X(plan_destroy_internal)(cld2); ++ X(plan_destroy_internal)(cld1); ++ return (plan *) 0; ++} ++ ++static solver *mksolver(int copy_transposed_out) ++{ ++ static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; ++ S *slv = MKSOLVER(S, &sadt); ++ slv->copy_transposed_out = copy_transposed_out; ++ return &(slv->super); ++} ++ ++void XM(transpose_alltoall_transposed_register)(planner *p) ++{ ++ int cto; ++ for (cto = 0; cto <= 1; ++cto) ++ REGISTER_SOLVER(p, mksolver(cto)); ++} + +--- mpi/transpose-pairwise.c 2014-03-04 19:41:03.000000000 +0100 ++++ mpi/transpose-pairwise.c 2015-09-05 06:00:05.715433709 +0200 +@@ -53,7 +53,6 @@ static void transpose_chunks(int *sched, + { + if (sched) { + int i; +- MPI_Status status; + + /* TODO: explore non-synchronous send/recv? */ + +@@ -74,7 +73,7 @@ static void transpose_chunks(int *sched, + O + rbo[pe], (int) (rbs[pe]), + FFTW_MPI_TYPE, + pe, (pe * n_pes + my_pe) & 0xffff, +- comm, &status); ++ comm, MPI_STATUS_IGNORE); + } + } + +@@ -92,7 +91,7 @@ static void transpose_chunks(int *sched, + O + rbo[pe], (int) (rbs[pe]), + FFTW_MPI_TYPE, + pe, (pe * n_pes + my_pe) & 0xffff, +- comm, &status); ++ comm, MPI_STATUS_IGNORE); + } + } + } +@@ -350,6 +349,7 @@ nada: + X(plan_destroy_internal)(*cld3); + X(plan_destroy_internal)(*cld2rest); + X(plan_destroy_internal)(*cld2); ++ *cld2 = *cld2rest = *cld3 = NULL; + return 0; + } + +--- mpi/transpose-pairwise-transposed.c 1970-01-01 01:00:00.000000000 +0100 ++++ mpi/transpose-pairwise-transposed.c 2015-09-05 06:00:07.280481042 +0200 +@@ -0,0 +1,510 @@ ++/* ++ * Copyright (c) 2003, 2007-11 Matteo Frigo ++ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology ++ * Copyright (c) 2012 Michael Pippig ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ++ * ++ */ ++ ++/* Distributed transposes using a sequence of carefully scheduled ++ pairwise exchanges. This has the advantage that it can be done ++ in-place, or out-of-place while preserving the input, using buffer ++ space proportional to the local size divided by the number of ++ processes (i.e. to the total array size divided by the number of ++ processes squared). */ ++ ++#include "mpi-transpose.h" ++#include <string.h> ++ ++typedef struct { ++ solver super; ++ int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ ++} S; ++ ++typedef struct { ++ plan_mpi_transpose super; ++ ++ plan *cld1, *cld2, *cld2rest, *cld3; ++ INT rest_Ioff, rest_Ooff; ++ ++ int n_pes, my_pe, *sched; ++ INT *send_block_sizes, *send_block_offsets; ++ INT *recv_block_sizes, *recv_block_offsets; ++ MPI_Comm comm; ++ int preserve_input; ++} P; ++ ++static void transpose_chunks(int *sched, int n_pes, int my_pe, ++ INT *sbs, INT *sbo, INT *rbs, INT *rbo, ++ MPI_Comm comm, ++ R *I, R *O) ++{ ++ if (sched) { ++ int i; ++ ++ /* TODO: explore non-synchronous send/recv? */ ++ ++ if (I == O) { ++ R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS); ++ ++ for (i = 0; i < n_pes; ++i) { ++ int pe = sched[i]; ++ if (my_pe == pe) { ++ if (rbo[pe] != sbo[pe]) ++ memmove(O + rbo[pe], O + sbo[pe], ++ sbs[pe] * sizeof(R)); ++ } ++ else { ++ memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R)); ++ MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE, ++ pe, (my_pe * n_pes + pe) & 0xffff, ++ O + rbo[pe], (int) (rbs[pe]), ++ FFTW_MPI_TYPE, ++ pe, (pe * n_pes + my_pe) & 0xffff, ++ comm, MPI_STATUS_IGNORE); ++ } ++ } ++ ++ X(ifree)(buf); ++ } ++ else { /* I != O */ ++ for (i = 0; i < n_pes; ++i) { ++ int pe = sched[i]; ++ if (my_pe == pe) ++ memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R)); ++ else ++ MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]), ++ FFTW_MPI_TYPE, ++ pe, (my_pe * n_pes + pe) & 0xffff, ++ O + rbo[pe], (int) (rbs[pe]), ++ FFTW_MPI_TYPE, ++ pe, (pe * n_pes + my_pe) & 0xffff, ++ comm, MPI_STATUS_IGNORE); ++ } ++ } ++ } ++} ++ ++/* transpose locally to get contiguous chunks ++ this may take two transposes if the block sizes are unequal ++ (3 subplans, two of which operate on disjoint data) */ ++static void apply_pretranspose( ++ const P *ego, R *I, R *O ++ ) ++{ ++ plan_rdft *cld2, *cld2rest, *cld3; ++ ++ cld3 = (plan_rdft *) ego->cld3; ++ if (cld3) ++ cld3->apply(ego->cld3, O, O); ++ /* else TRANSPOSED_IN is true and user wants I transposed */ ++ ++ cld2 = (plan_rdft *) ego->cld2; ++ cld2->apply(ego->cld2, I, O); ++ cld2rest = (plan_rdft *) ego->cld2rest; ++ if (cld2rest) { ++ cld2rest->apply(ego->cld2rest, ++ I + ego->rest_Ioff, O + ego->rest_Ooff); ++ } ++} ++ ++static void apply(const plan *ego_, R *I, R *O) ++{ ++ const P *ego = (const P *) ego_; ++ plan_rdft *cld1 = (plan_rdft *) ego->cld1; ++ ++ if (cld1) { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, O); ++ ++ if(ego->preserve_input) I = O; ++ ++ /* transpose chunks globally */ ++ transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, ++ ego->send_block_sizes, ego->send_block_offsets, ++ ego->recv_block_sizes, ego->recv_block_offsets, ++ ego->comm, O, I); ++ ++ /* transpose locally to get non-transposed output */ ++ cld1->apply(ego->cld1, I, O); ++ } /* else TRANSPOSED_OUT is true and user wants O transposed */ ++ else if (ego->preserve_input) { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, O); ++ ++ /* transpose chunks globally */ ++ transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, ++ ego->send_block_sizes, ego->send_block_offsets, ++ ego->recv_block_sizes, ego->recv_block_offsets, ++ ego->comm, O, O); ++ } ++ else { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, I); ++ ++ /* transpose chunks globally */ ++ transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, ++ ego->send_block_sizes, ego->send_block_offsets, ++ ego->recv_block_sizes, ego->recv_block_offsets, ++ ego->comm, I, O); ++ } ++} ++ ++static int applicable(const S *ego, const problem *p_, ++ const planner *plnr) ++{ ++ const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; ++ /* Note: this is *not* UGLY for out-of-place, destroy-input plans; ++ the planner often prefers transpose-pairwise to transpose-alltoall, ++ at least with LAM MPI on my machine. */ ++ return (1 ++ && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) ++ && p->I != p->O)) ++ && ONLY_TRANSPOSEDP(p->flags)); ++} ++ ++static void awake(plan *ego_, enum wakefulness wakefulness) ++{ ++ P *ego = (P *) ego_; ++ X(plan_awake)(ego->cld1, wakefulness); ++ X(plan_awake)(ego->cld2, wakefulness); ++ X(plan_awake)(ego->cld2rest, wakefulness); ++ X(plan_awake)(ego->cld3, wakefulness); ++} ++ ++static void destroy(plan *ego_) ++{ ++ P *ego = (P *) ego_; ++ X(ifree0)(ego->sched); ++ X(ifree0)(ego->send_block_sizes); ++ MPI_Comm_free(&ego->comm); ++ X(plan_destroy_internal)(ego->cld3); ++ X(plan_destroy_internal)(ego->cld2rest); ++ X(plan_destroy_internal)(ego->cld2); ++ X(plan_destroy_internal)(ego->cld1); ++} ++ ++static void print(const plan *ego_, printer *p) ++{ ++ const P *ego = (const P *) ego_; ++ p->print(p, "(mpi-transpose-pairwise-transposed%s%(%p%)%(%p%)%(%p%)%(%p%))", ++ ego->preserve_input==2 ?"/p":"", ++ ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); ++} ++ ++/* Given a process which_pe and a number of processes npes, fills ++ the array sched[npes] with a sequence of processes to communicate ++ with for a deadlock-free, optimum-overlap all-to-all communication. ++ (All processes must call this routine to get their own schedules.) ++ The schedule can be re-ordered arbitrarily as long as all processes ++ apply the same permutation to their schedules. ++ ++ The algorithm here is based upon the one described in: ++ J. A. M. Schreuder, "Constructing timetables for sport ++ competitions," Mathematical Programming Study 13, pp. 58-67 (1980). ++ In a sport competition, you have N teams and want every team to ++ play every other team in as short a time as possible (maximum overlap ++ between games). This timetabling problem is therefore identical ++ to that of an all-to-all communications problem. In our case, there ++ is one wrinkle: as part of the schedule, the process must do ++ some data transfer with itself (local data movement), analogous ++ to a requirement that each team "play itself" in addition to other ++ teams. With this wrinkle, it turns out that an optimal timetable ++ (N parallel games) can be constructed for any N, not just for even ++ N as in the original problem described by Schreuder. ++*/ ++static void fill1_comm_sched(int *sched, int which_pe, int npes) ++{ ++ int pe, i, n, s = 0; ++ A(which_pe >= 0 && which_pe < npes); ++ if (npes % 2 == 0) { ++ n = npes; ++ sched[s++] = which_pe; ++ } ++ else ++ n = npes + 1; ++ for (pe = 0; pe < n - 1; ++pe) { ++ if (npes % 2 == 0) { ++ if (pe == which_pe) sched[s++] = npes - 1; ++ else if (npes - 1 == which_pe) sched[s++] = pe; ++ } ++ else if (pe == which_pe) sched[s++] = pe; ++ ++ if (pe != which_pe && which_pe < n - 1) { ++ i = (pe - which_pe + (n - 1)) % (n - 1); ++ if (i < n/2) ++ sched[s++] = (pe + i) % (n - 1); ++ ++ i = (which_pe - pe + (n - 1)) % (n - 1); ++ if (i < n/2) ++ sched[s++] = (pe - i + (n - 1)) % (n - 1); ++ } ++ } ++ A(s == npes); ++} ++ ++/* Sort the communication schedule sched for npes so that the schedule ++ on process sortpe is ascending or descending (!ascending). This is ++ necessary to allow in-place transposes when the problem does not ++ divide equally among the processes. In this case there is one ++ process where the incoming blocks are bigger/smaller than the ++ outgoing blocks and thus have to be received in ++ descending/ascending order, respectively, to avoid overwriting data ++ before it is sent. */ ++static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending) ++{ ++ int *sortsched, i; ++ sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER); ++ fill1_comm_sched(sortsched, sortpe, npes); ++ if (ascending) ++ for (i = 0; i < npes; ++i) ++ sortsched[npes + sortsched[i]] = sched[i]; ++ else ++ for (i = 0; i < npes; ++i) ++ sortsched[2*npes - 1 - sortsched[i]] = sched[i]; ++ for (i = 0; i < npes; ++i) ++ sched[i] = sortsched[npes + i]; ++ X(ifree)(sortsched); ++} ++ ++/* make the plans to do the pre-MPI transpositions (shared with ++ transpose-alltoall-transposed) */ ++int XM(mkplans_pretranspose)(const problem_mpi_transpose *p, planner *plnr, ++ R *I, R *O, int my_pe, ++ plan **cld2, plan **cld2rest, plan **cld3, ++ INT *rest_Ioff, INT *rest_Ooff) ++{ ++ INT vn = p->vn; ++ INT b = XM(block)(p->nx, p->block, my_pe); ++ INT bt = p->tblock; ++ INT nyb = p->ny / bt; /* number of equal-sized blocks */ ++ INT nyr = p->ny - nyb * bt; /* leftover rows after equal blocks */ ++ ++ *cld2 = *cld2rest = *cld3 = NULL; ++ *rest_Ioff = *rest_Ooff = 0; ++ ++ if (!(p->flags & TRANSPOSED_IN) && (nyr == 0 || I != O)) { ++ INT ny = p->ny * vn; ++ bt *= vn; ++ *cld2 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_3d) ++ (nyb, bt, b * bt, ++ b, ny, bt, ++ bt, 1, 1), ++ I, O), ++ 0, 0, NO_SLOW); ++ if (!*cld2) goto nada; ++ ++ if (nyr > 0) { ++ *rest_Ioff = nyb * bt; ++ *rest_Ooff = nyb * b * bt; ++ bt = nyr * vn; ++ *cld2rest = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_2d) ++ (b, ny, bt, ++ bt, 1, 1), ++ I + *rest_Ioff, ++ O + *rest_Ooff), ++ 0, 0, NO_SLOW); ++ if (!*cld2rest) goto nada; ++ } ++ } ++ else { ++ *cld2 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)( ++ X(mktensor_4d) ++ (nyb, b * bt * vn, b * bt * vn, ++ b, vn, bt * vn, ++ bt, b * vn, vn, ++ vn, 1, 1), ++ I, O), ++ 0, 0, NO_SLOW); ++ if (!*cld2) goto nada; ++ ++ *rest_Ioff = *rest_Ooff = nyb * bt * b * vn; ++ *cld2rest = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)( ++ X(mktensor_3d) ++ (b, vn, nyr * vn, ++ nyr, b * vn, vn, ++ vn, 1, 1), ++ I + *rest_Ioff, O + *rest_Ooff), ++ 0, 0, NO_SLOW); ++ if (!*cld2rest) goto nada; ++ ++ if (!(p->flags & TRANSPOSED_IN)) { ++ *cld3 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)( ++ X(mktensor_3d) ++ (p->ny, vn, b * vn, ++ b, p->ny * vn, vn, ++ vn, 1, 1), ++ I, I), ++ 0, 0, NO_SLOW); ++ if (!*cld3) goto nada; ++ } ++ } ++ ++ return 1; ++ ++nada: ++ X(plan_destroy_internal)(*cld3); ++ X(plan_destroy_internal)(*cld2rest); ++ X(plan_destroy_internal)(*cld2); ++ *cld2 = *cld2rest = *cld3 = NULL; ++ return 0; ++} ++ ++static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) ++{ ++ const S *ego = (const S *) ego_; ++ const problem_mpi_transpose *p; ++ P *pln; ++ plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; ++ INT b, bt, vn, rest_Ioff, rest_Ooff; ++ INT *sbs, *sbo, *rbs, *rbo; ++ int pe, my_pe, n_pes, sort_pe = -1, ascending = 1; ++ R *I, *O; ++ static const plan_adt padt = { ++ XM(transpose_solve), awake, print, destroy ++ }; ++ ++ UNUSED(ego); ++ ++ if (!applicable(ego, p_, plnr)) ++ return (plan *) 0; ++ ++ p = (const problem_mpi_transpose *) p_; ++ vn = p->vn; ++ I = p->I; O = p->O; ++ ++ MPI_Comm_rank(p->comm, &my_pe); ++ MPI_Comm_size(p->comm, &n_pes); ++ ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ ++ ++ if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = p->O; ++ ++ if (!(p->flags & TRANSPOSED_OUT)) { /* nx x bt x vn -> bt x nx x vn */ ++ cld1 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_3d) ++ (bt, vn, p->nx * vn, ++ p->nx, bt * vn, vn, ++ vn, 1, 1), ++ I, O = p->O), ++ 0, 0, NO_SLOW); ++ if (XM(any_true)(!cld1, p->comm)) goto nada; ++ ++ } ++ else { ++ if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) ++ O = p->O; ++ else ++ O = p->I; ++ } ++ ++ if (XM(any_true)(!XM(mkplans_pretranspose)(p, plnr, p->I, O, my_pe, ++ &cld2, &cld2rest, &cld3, ++ &rest_Ioff, &rest_Ooff), ++ p->comm)) goto nada; ++ ++ pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); ++ ++ pln->cld1 = cld1; ++ pln->cld2 = cld2; ++ pln->cld2rest = cld2rest; ++ pln->rest_Ioff = rest_Ioff; ++ pln->rest_Ooff = rest_Ooff; ++ pln->cld3 = cld3; ++ pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); ++ ++ MPI_Comm_dup(p->comm, &pln->comm); ++ ++ n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block), ++ XM(num_blocks)(p->ny, p->tblock)); ++ ++ /* Compute sizes/offsets of blocks to exchange between processors */ ++ sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS); ++ sbo = sbs + n_pes; ++ rbs = sbo + n_pes; ++ rbo = rbs + n_pes; ++ b = XM(block)(p->nx, p->block, my_pe); ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ for (pe = 0; pe < n_pes; ++pe) { ++ INT db, dbt; /* destination block sizes */ ++ db = XM(block)(p->nx, p->block, pe); ++ dbt = XM(block)(p->ny, p->tblock, pe); ++ ++ sbs[pe] = b * dbt * vn; ++ sbo[pe] = pe * (b * p->tblock) * vn; ++ rbs[pe] = db * bt * vn; ++ rbo[pe] = pe * (p->block * bt) * vn; ++ ++ if (db * dbt > 0 && db * p->tblock != p->block * dbt) { ++ A(sort_pe == -1); /* only one process should need sorting */ ++ sort_pe = pe; ++ ascending = db * p->tblock > p->block * dbt; ++ } ++ } ++ pln->n_pes = n_pes; ++ pln->my_pe = my_pe; ++ pln->send_block_sizes = sbs; ++ pln->send_block_offsets = sbo; ++ pln->recv_block_sizes = rbs; ++ pln->recv_block_offsets = rbo; ++ ++ if (my_pe >= n_pes) { ++ pln->sched = 0; /* this process is not doing anything */ ++ } ++ else { ++ pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS); ++ fill1_comm_sched(pln->sched, my_pe, n_pes); ++ if (sort_pe >= 0) ++ sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending); ++ } ++ ++ X(ops_zero)(&pln->super.super.ops); ++ if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); ++ if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); ++ if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); ++ if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); ++ /* FIXME: should MPI operations be counted in "other" somehow? */ ++ ++ return &(pln->super.super); ++ ++ nada: ++ X(plan_destroy_internal)(cld3); ++ X(plan_destroy_internal)(cld2rest); ++ X(plan_destroy_internal)(cld2); ++ X(plan_destroy_internal)(cld1); ++ return (plan *) 0; ++} ++ ++static solver *mksolver(int preserve_input) ++{ ++ static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; ++ S *slv = MKSOLVER(S, &sadt); ++ slv->preserve_input = preserve_input; ++ return &(slv->super); ++} ++ ++void XM(transpose_pairwise_transposed_register)(planner *p) ++{ ++ int preserve_input; ++ for (preserve_input = 0; preserve_input <= 1; ++preserve_input) ++ REGISTER_SOLVER(p, mksolver(preserve_input)); ++} diff --git a/var/spack/repos/builtin/packages/fftw/pfft-3.3.5.patch b/var/spack/repos/builtin/packages/fftw/pfft-3.3.5.patch new file mode 100644 index 0000000000..360a3757f9 --- /dev/null +++ b/var/spack/repos/builtin/packages/fftw/pfft-3.3.5.patch @@ -0,0 +1,858 @@ +--- mpi/conf.c 2014-03-04 19:41:03.000000000 +0100 ++++ mpi/conf.c 2015-09-05 05:53:19.085516467 +0200 +@@ -29,6 +29,8 @@ static const solvtab s = + SOLVTAB(XM(transpose_pairwise_register)), + SOLVTAB(XM(transpose_alltoall_register)), + SOLVTAB(XM(transpose_recurse_register)), ++ SOLVTAB(XM(transpose_pairwise_transposed_register)), ++ SOLVTAB(XM(transpose_alltoall_transposed_register)), + SOLVTAB(XM(dft_rank_geq2_register)), + SOLVTAB(XM(dft_rank_geq2_transposed_register)), + SOLVTAB(XM(dft_serial_register)), + +--- mpi/Makefile.am 2013-03-18 13:10:45.000000000 +0100 ++++ mpi/Makefile.am 2015-09-05 05:53:19.084516437 +0200 +@@ -16,6 +16,7 @@ BUILT_SOURCES = fftw3-mpi.f03.in fftw3-m + CLEANFILES = fftw3-mpi.f03 fftw3l-mpi.f03 + + TRANSPOSE_SRC = transpose-alltoall.c transpose-pairwise.c transpose-recurse.c transpose-problem.c transpose-solve.c mpi-transpose.h ++TRANSPOSE_SRC += transpose-alltoall-transposed.c transpose-pairwise-transposed.c + DFT_SRC = dft-serial.c dft-rank-geq2.c dft-rank-geq2-transposed.c dft-rank1.c dft-rank1-bigvec.c dft-problem.c dft-solve.c mpi-dft.h + RDFT_SRC = rdft-serial.c rdft-rank-geq2.c rdft-rank-geq2-transposed.c rdft-rank1-bigvec.c rdft-problem.c rdft-solve.c mpi-rdft.h + RDFT2_SRC = rdft2-serial.c rdft2-rank-geq2.c rdft2-rank-geq2-transposed.c rdft2-problem.c rdft2-solve.c mpi-rdft2.h + +--- mpi/mpi-transpose.h 2014-03-04 19:41:03.000000000 +0100 ++++ mpi/mpi-transpose.h 2015-09-05 05:53:19.085516467 +0200 +@@ -59,3 +59,5 @@ int XM(mkplans_posttranspose)(const prob + void XM(transpose_pairwise_register)(planner *p); + void XM(transpose_alltoall_register)(planner *p); + void XM(transpose_recurse_register)(planner *p); ++void XM(transpose_pairwise_transposed_register)(planner *p); ++void XM(transpose_alltoall_transposed_register)(planner *p); + +--- mpi/transpose-alltoall-transposed.c 1970-01-01 01:00:00.000000000 +0100 ++++ mpi/transpose-alltoall-transposed.c 2015-09-05 05:53:19.085516467 +0200 +@@ -0,0 +1,280 @@ ++/* ++ * Copyright (c) 2003, 2007-11 Matteo Frigo ++ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology ++ * Copyright (c) 2012 Michael Pippig ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ++ * ++ */ ++ ++/* plans for distributed out-of-place transpose using MPI_Alltoall, ++ and which destroy the input array (also if TRANSPOSED_IN is used) */ ++ ++#include "mpi-transpose.h" ++#include <string.h> ++ ++typedef struct { ++ solver super; ++ int copy_transposed_out; /* whether to copy the output for TRANSPOSED_OUT, ++ which makes the first transpose out-of-place ++ but costs an extra copy and requires us ++ to destroy the input */ ++} S; ++ ++typedef struct { ++ plan_mpi_transpose super; ++ ++ plan *cld1, *cld2, *cld2rest, *cld3; ++ ++ MPI_Comm comm; ++ int *send_block_sizes, *send_block_offsets; ++ int *recv_block_sizes, *recv_block_offsets; ++ ++ INT rest_Ioff, rest_Ooff; ++ ++ int equal_blocks; ++} P; ++ ++/* transpose locally to get contiguous chunks ++ this may take two transposes if the block sizes are unequal ++ (3 subplans, two of which operate on disjoint data) */ ++static void apply_pretranspose( ++ const P *ego, R *I, R *O ++ ) ++{ ++ plan_rdft *cld2, *cld2rest, *cld3; ++ ++ cld3 = (plan_rdft *) ego->cld3; ++ if (cld3) ++ cld3->apply(ego->cld3, O, O); ++ /* else TRANSPOSED_IN is true and user wants I transposed */ ++ ++ cld2 = (plan_rdft *) ego->cld2; ++ cld2->apply(ego->cld2, I, O); ++ cld2rest = (plan_rdft *) ego->cld2rest; ++ if (cld2rest) { ++ cld2rest->apply(ego->cld2rest, ++ I + ego->rest_Ioff, O + ego->rest_Ooff); ++ } ++} ++ ++static void apply(const plan *ego_, R *I, R *O) ++{ ++ const P *ego = (const P *) ego_; ++ plan_rdft *cld1 = (plan_rdft *) ego->cld1; ++ ++ if (cld1) { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, O); ++ ++ /* transpose chunks globally */ ++ if (ego->equal_blocks) ++ MPI_Alltoall(O, ego->send_block_sizes[0], FFTW_MPI_TYPE, ++ I, ego->recv_block_sizes[0], FFTW_MPI_TYPE, ++ ego->comm); ++ else ++ MPI_Alltoallv(O, ego->send_block_sizes, ego->send_block_offsets, ++ FFTW_MPI_TYPE, ++ I, ego->recv_block_sizes, ego->recv_block_offsets, ++ FFTW_MPI_TYPE, ++ ego->comm); ++ ++ /* transpose locally to get non-transposed output */ ++ cld1->apply(ego->cld1, I, O); ++ } /* else TRANSPOSED_OUT is true and user wants O transposed */ ++ else { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, I); ++ ++ /* transpose chunks globally */ ++ if (ego->equal_blocks) ++ MPI_Alltoall(I, ego->send_block_sizes[0], FFTW_MPI_TYPE, ++ O, ego->recv_block_sizes[0], FFTW_MPI_TYPE, ++ ego->comm); ++ else ++ MPI_Alltoallv(I, ego->send_block_sizes, ego->send_block_offsets, ++ FFTW_MPI_TYPE, ++ O, ego->recv_block_sizes, ego->recv_block_offsets, ++ FFTW_MPI_TYPE, ++ ego->comm); ++ } ++} ++ ++static int applicable(const S *ego, const problem *p_, ++ const planner *plnr) ++{ ++ /* in contrast to transpose-alltoall this algorithm can not preserve the input, ++ * since we need at least one transpose before the (out-of-place) Alltoall */ ++ const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; ++ return (1 ++ && p->I != p->O ++ && (!NO_DESTROY_INPUTP(plnr)) ++ && ((p->flags & TRANSPOSED_OUT) || !ego->copy_transposed_out) ++ && ONLY_TRANSPOSEDP(p->flags) ++ ); ++} ++ ++static void awake(plan *ego_, enum wakefulness wakefulness) ++{ ++ P *ego = (P *) ego_; ++ X(plan_awake)(ego->cld1, wakefulness); ++ X(plan_awake)(ego->cld2, wakefulness); ++ X(plan_awake)(ego->cld2rest, wakefulness); ++ X(plan_awake)(ego->cld3, wakefulness); ++} ++ ++static void destroy(plan *ego_) ++{ ++ P *ego = (P *) ego_; ++ X(ifree0)(ego->send_block_sizes); ++ MPI_Comm_free(&ego->comm); ++ X(plan_destroy_internal)(ego->cld3); ++ X(plan_destroy_internal)(ego->cld2rest); ++ X(plan_destroy_internal)(ego->cld2); ++ X(plan_destroy_internal)(ego->cld1); ++} ++ ++static void print(const plan *ego_, printer *p) ++{ ++ const P *ego = (const P *) ego_; ++ p->print(p, "(mpi-transpose-alltoall-transposed%s%(%p%)%(%p%)%(%p%)%(%p%))", ++ ego->equal_blocks ? "/e" : "", ++ ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); ++} ++ ++static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) ++{ ++ const S *ego = (const S *) ego_; ++ const problem_mpi_transpose *p; ++ P *pln; ++ plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; ++ INT b, bt, vn, rest_Ioff, rest_Ooff; ++ R *O; ++ int *sbs, *sbo, *rbs, *rbo; ++ int pe, my_pe, n_pes; ++ int equal_blocks = 1; ++ static const plan_adt padt = { ++ XM(transpose_solve), awake, print, destroy ++ }; ++ ++ if (!applicable(ego, p_, plnr)) ++ return (plan *) 0; ++ ++ p = (const problem_mpi_transpose *) p_; ++ vn = p->vn; ++ ++ MPI_Comm_rank(p->comm, &my_pe); ++ MPI_Comm_size(p->comm, &n_pes); ++ ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ ++ if (p->flags & TRANSPOSED_OUT) { /* O stays transposed */ ++ if (ego->copy_transposed_out) { ++ cld1 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_1d) ++ (bt * p->nx * vn, 1, 1), ++ p->I, O = p->O), ++ 0, 0, NO_SLOW); ++ if (XM(any_true)(!cld1, p->comm)) goto nada; ++ } ++ else /* first transpose is in-place */ ++ O = p->I; ++ } ++ else { /* transpose nx x bt x vn -> bt x nx x vn */ ++ cld1 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_3d) ++ (bt, vn, p->nx * vn, ++ p->nx, bt * vn, vn, ++ vn, 1, 1), ++ p->I, O = p->O), ++ 0, 0, NO_SLOW); ++ if (XM(any_true)(!cld1, p->comm)) goto nada; ++ } ++ ++ if (XM(any_true)(!XM(mkplans_pretranspose)(p, plnr, p->I, O, my_pe, ++ &cld2, &cld2rest, &cld3, ++ &rest_Ioff, &rest_Ooff), ++ p->comm)) goto nada; ++ ++ ++ pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); ++ ++ pln->cld1 = cld1; ++ pln->cld2 = cld2; ++ pln->cld2rest = cld2rest; ++ pln->rest_Ioff = rest_Ioff; ++ pln->rest_Ooff = rest_Ooff; ++ pln->cld3 = cld3; ++ ++ MPI_Comm_dup(p->comm, &pln->comm); ++ ++ /* Compute sizes/offsets of blocks to send for all-to-all command. */ ++ sbs = (int *) MALLOC(4 * n_pes * sizeof(int), PLANS); ++ sbo = sbs + n_pes; ++ rbs = sbo + n_pes; ++ rbo = rbs + n_pes; ++ b = XM(block)(p->nx, p->block, my_pe); ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ for (pe = 0; pe < n_pes; ++pe) { ++ INT db, dbt; /* destination block sizes */ ++ db = XM(block)(p->nx, p->block, pe); ++ dbt = XM(block)(p->ny, p->tblock, pe); ++ if (db != p->block || dbt != p->tblock) ++ equal_blocks = 0; ++ ++ /* MPI requires type "int" here; apparently it ++ has no 64-bit API? Grrr. */ ++ sbs[pe] = (int) (b * dbt * vn); ++ sbo[pe] = (int) (pe * (b * p->tblock) * vn); ++ rbs[pe] = (int) (db * bt * vn); ++ rbo[pe] = (int) (pe * (p->block * bt) * vn); ++ } ++ pln->send_block_sizes = sbs; ++ pln->send_block_offsets = sbo; ++ pln->recv_block_sizes = rbs; ++ pln->recv_block_offsets = rbo; ++ pln->equal_blocks = equal_blocks; ++ ++ X(ops_zero)(&pln->super.super.ops); ++ if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); ++ if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); ++ if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); ++ if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); ++ /* FIXME: should MPI operations be counted in "other" somehow? */ ++ ++ return &(pln->super.super); ++ ++ nada: ++ X(plan_destroy_internal)(cld3); ++ X(plan_destroy_internal)(cld2rest); ++ X(plan_destroy_internal)(cld2); ++ X(plan_destroy_internal)(cld1); ++ return (plan *) 0; ++} ++ ++static solver *mksolver(int copy_transposed_out) ++{ ++ static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; ++ S *slv = MKSOLVER(S, &sadt); ++ slv->copy_transposed_out = copy_transposed_out; ++ return &(slv->super); ++} ++ ++void XM(transpose_alltoall_transposed_register)(planner *p) ++{ ++ int cto; ++ for (cto = 0; cto <= 1; ++cto) ++ REGISTER_SOLVER(p, mksolver(cto)); ++} + +--- mpi/transpose-pairwise.c 2014-03-04 19:41:03.000000000 +0100 ++++ mpi/transpose-pairwise.c 2015-09-05 06:00:05.715433709 +0200 +@@ -53,7 +53,6 @@ static void transpose_chunks(int *sched, + { + if (sched) { + int i; +- MPI_Status status; + + /* TODO: explore non-synchronous send/recv? */ + +@@ -74,7 +73,7 @@ static void transpose_chunks(int *sched, + O + rbo[pe], (int) (rbs[pe]), + FFTW_MPI_TYPE, + pe, (pe * n_pes + my_pe) & 0xffff, +- comm, &status); ++ comm, MPI_STATUS_IGNORE); + } + } + +@@ -92,7 +91,7 @@ static void transpose_chunks(int *sched, + O + rbo[pe], (int) (rbs[pe]), + FFTW_MPI_TYPE, + pe, (pe * n_pes + my_pe) & 0xffff, +- comm, &status); ++ comm, MPI_STATUS_IGNORE); + } + } + } + +--- mpi/transpose-pairwise-transposed.c 1970-01-01 01:00:00.000000000 +0100 ++++ mpi/transpose-pairwise-transposed.c 2015-09-05 06:00:07.280481042 +0200 +@@ -0,0 +1,510 @@ ++/* ++ * Copyright (c) 2003, 2007-11 Matteo Frigo ++ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology ++ * Copyright (c) 2012 Michael Pippig ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ++ * ++ */ ++ ++/* Distributed transposes using a sequence of carefully scheduled ++ pairwise exchanges. This has the advantage that it can be done ++ in-place, or out-of-place while preserving the input, using buffer ++ space proportional to the local size divided by the number of ++ processes (i.e. to the total array size divided by the number of ++ processes squared). */ ++ ++#include "mpi-transpose.h" ++#include <string.h> ++ ++typedef struct { ++ solver super; ++ int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ ++} S; ++ ++typedef struct { ++ plan_mpi_transpose super; ++ ++ plan *cld1, *cld2, *cld2rest, *cld3; ++ INT rest_Ioff, rest_Ooff; ++ ++ int n_pes, my_pe, *sched; ++ INT *send_block_sizes, *send_block_offsets; ++ INT *recv_block_sizes, *recv_block_offsets; ++ MPI_Comm comm; ++ int preserve_input; ++} P; ++ ++static void transpose_chunks(int *sched, int n_pes, int my_pe, ++ INT *sbs, INT *sbo, INT *rbs, INT *rbo, ++ MPI_Comm comm, ++ R *I, R *O) ++{ ++ if (sched) { ++ int i; ++ ++ /* TODO: explore non-synchronous send/recv? */ ++ ++ if (I == O) { ++ R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS); ++ ++ for (i = 0; i < n_pes; ++i) { ++ int pe = sched[i]; ++ if (my_pe == pe) { ++ if (rbo[pe] != sbo[pe]) ++ memmove(O + rbo[pe], O + sbo[pe], ++ sbs[pe] * sizeof(R)); ++ } ++ else { ++ memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R)); ++ MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE, ++ pe, (my_pe * n_pes + pe) & 0xffff, ++ O + rbo[pe], (int) (rbs[pe]), ++ FFTW_MPI_TYPE, ++ pe, (pe * n_pes + my_pe) & 0xffff, ++ comm, MPI_STATUS_IGNORE); ++ } ++ } ++ ++ X(ifree)(buf); ++ } ++ else { /* I != O */ ++ for (i = 0; i < n_pes; ++i) { ++ int pe = sched[i]; ++ if (my_pe == pe) ++ memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R)); ++ else ++ MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]), ++ FFTW_MPI_TYPE, ++ pe, (my_pe * n_pes + pe) & 0xffff, ++ O + rbo[pe], (int) (rbs[pe]), ++ FFTW_MPI_TYPE, ++ pe, (pe * n_pes + my_pe) & 0xffff, ++ comm, MPI_STATUS_IGNORE); ++ } ++ } ++ } ++} ++ ++/* transpose locally to get contiguous chunks ++ this may take two transposes if the block sizes are unequal ++ (3 subplans, two of which operate on disjoint data) */ ++static void apply_pretranspose( ++ const P *ego, R *I, R *O ++ ) ++{ ++ plan_rdft *cld2, *cld2rest, *cld3; ++ ++ cld3 = (plan_rdft *) ego->cld3; ++ if (cld3) ++ cld3->apply(ego->cld3, O, O); ++ /* else TRANSPOSED_IN is true and user wants I transposed */ ++ ++ cld2 = (plan_rdft *) ego->cld2; ++ cld2->apply(ego->cld2, I, O); ++ cld2rest = (plan_rdft *) ego->cld2rest; ++ if (cld2rest) { ++ cld2rest->apply(ego->cld2rest, ++ I + ego->rest_Ioff, O + ego->rest_Ooff); ++ } ++} ++ ++static void apply(const plan *ego_, R *I, R *O) ++{ ++ const P *ego = (const P *) ego_; ++ plan_rdft *cld1 = (plan_rdft *) ego->cld1; ++ ++ if (cld1) { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, O); ++ ++ if(ego->preserve_input) I = O; ++ ++ /* transpose chunks globally */ ++ transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, ++ ego->send_block_sizes, ego->send_block_offsets, ++ ego->recv_block_sizes, ego->recv_block_offsets, ++ ego->comm, O, I); ++ ++ /* transpose locally to get non-transposed output */ ++ cld1->apply(ego->cld1, I, O); ++ } /* else TRANSPOSED_OUT is true and user wants O transposed */ ++ else if (ego->preserve_input) { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, O); ++ ++ /* transpose chunks globally */ ++ transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, ++ ego->send_block_sizes, ego->send_block_offsets, ++ ego->recv_block_sizes, ego->recv_block_offsets, ++ ego->comm, O, O); ++ } ++ else { ++ /* transpose locally to get contiguous chunks */ ++ apply_pretranspose(ego, I, I); ++ ++ /* transpose chunks globally */ ++ transpose_chunks(ego->sched, ego->n_pes, ego->my_pe, ++ ego->send_block_sizes, ego->send_block_offsets, ++ ego->recv_block_sizes, ego->recv_block_offsets, ++ ego->comm, I, O); ++ } ++} ++ ++static int applicable(const S *ego, const problem *p_, ++ const planner *plnr) ++{ ++ const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; ++ /* Note: this is *not* UGLY for out-of-place, destroy-input plans; ++ the planner often prefers transpose-pairwise to transpose-alltoall, ++ at least with LAM MPI on my machine. */ ++ return (1 ++ && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) ++ && p->I != p->O)) ++ && ONLY_TRANSPOSEDP(p->flags)); ++} ++ ++static void awake(plan *ego_, enum wakefulness wakefulness) ++{ ++ P *ego = (P *) ego_; ++ X(plan_awake)(ego->cld1, wakefulness); ++ X(plan_awake)(ego->cld2, wakefulness); ++ X(plan_awake)(ego->cld2rest, wakefulness); ++ X(plan_awake)(ego->cld3, wakefulness); ++} ++ ++static void destroy(plan *ego_) ++{ ++ P *ego = (P *) ego_; ++ X(ifree0)(ego->sched); ++ X(ifree0)(ego->send_block_sizes); ++ MPI_Comm_free(&ego->comm); ++ X(plan_destroy_internal)(ego->cld3); ++ X(plan_destroy_internal)(ego->cld2rest); ++ X(plan_destroy_internal)(ego->cld2); ++ X(plan_destroy_internal)(ego->cld1); ++} ++ ++static void print(const plan *ego_, printer *p) ++{ ++ const P *ego = (const P *) ego_; ++ p->print(p, "(mpi-transpose-pairwise-transposed%s%(%p%)%(%p%)%(%p%)%(%p%))", ++ ego->preserve_input==2 ?"/p":"", ++ ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); ++} ++ ++/* Given a process which_pe and a number of processes npes, fills ++ the array sched[npes] with a sequence of processes to communicate ++ with for a deadlock-free, optimum-overlap all-to-all communication. ++ (All processes must call this routine to get their own schedules.) ++ The schedule can be re-ordered arbitrarily as long as all processes ++ apply the same permutation to their schedules. ++ ++ The algorithm here is based upon the one described in: ++ J. A. M. Schreuder, "Constructing timetables for sport ++ competitions," Mathematical Programming Study 13, pp. 58-67 (1980). ++ In a sport competition, you have N teams and want every team to ++ play every other team in as short a time as possible (maximum overlap ++ between games). This timetabling problem is therefore identical ++ to that of an all-to-all communications problem. In our case, there ++ is one wrinkle: as part of the schedule, the process must do ++ some data transfer with itself (local data movement), analogous ++ to a requirement that each team "play itself" in addition to other ++ teams. With this wrinkle, it turns out that an optimal timetable ++ (N parallel games) can be constructed for any N, not just for even ++ N as in the original problem described by Schreuder. ++*/ ++static void fill1_comm_sched(int *sched, int which_pe, int npes) ++{ ++ int pe, i, n, s = 0; ++ A(which_pe >= 0 && which_pe < npes); ++ if (npes % 2 == 0) { ++ n = npes; ++ sched[s++] = which_pe; ++ } ++ else ++ n = npes + 1; ++ for (pe = 0; pe < n - 1; ++pe) { ++ if (npes % 2 == 0) { ++ if (pe == which_pe) sched[s++] = npes - 1; ++ else if (npes - 1 == which_pe) sched[s++] = pe; ++ } ++ else if (pe == which_pe) sched[s++] = pe; ++ ++ if (pe != which_pe && which_pe < n - 1) { ++ i = (pe - which_pe + (n - 1)) % (n - 1); ++ if (i < n/2) ++ sched[s++] = (pe + i) % (n - 1); ++ ++ i = (which_pe - pe + (n - 1)) % (n - 1); ++ if (i < n/2) ++ sched[s++] = (pe - i + (n - 1)) % (n - 1); ++ } ++ } ++ A(s == npes); ++} ++ ++/* Sort the communication schedule sched for npes so that the schedule ++ on process sortpe is ascending or descending (!ascending). This is ++ necessary to allow in-place transposes when the problem does not ++ divide equally among the processes. In this case there is one ++ process where the incoming blocks are bigger/smaller than the ++ outgoing blocks and thus have to be received in ++ descending/ascending order, respectively, to avoid overwriting data ++ before it is sent. */ ++static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending) ++{ ++ int *sortsched, i; ++ sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER); ++ fill1_comm_sched(sortsched, sortpe, npes); ++ if (ascending) ++ for (i = 0; i < npes; ++i) ++ sortsched[npes + sortsched[i]] = sched[i]; ++ else ++ for (i = 0; i < npes; ++i) ++ sortsched[2*npes - 1 - sortsched[i]] = sched[i]; ++ for (i = 0; i < npes; ++i) ++ sched[i] = sortsched[npes + i]; ++ X(ifree)(sortsched); ++} ++ ++/* make the plans to do the pre-MPI transpositions (shared with ++ transpose-alltoall-transposed) */ ++int XM(mkplans_pretranspose)(const problem_mpi_transpose *p, planner *plnr, ++ R *I, R *O, int my_pe, ++ plan **cld2, plan **cld2rest, plan **cld3, ++ INT *rest_Ioff, INT *rest_Ooff) ++{ ++ INT vn = p->vn; ++ INT b = XM(block)(p->nx, p->block, my_pe); ++ INT bt = p->tblock; ++ INT nyb = p->ny / bt; /* number of equal-sized blocks */ ++ INT nyr = p->ny - nyb * bt; /* leftover rows after equal blocks */ ++ ++ *cld2 = *cld2rest = *cld3 = NULL; ++ *rest_Ioff = *rest_Ooff = 0; ++ ++ if (!(p->flags & TRANSPOSED_IN) && (nyr == 0 || I != O)) { ++ INT ny = p->ny * vn; ++ bt *= vn; ++ *cld2 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_3d) ++ (nyb, bt, b * bt, ++ b, ny, bt, ++ bt, 1, 1), ++ I, O), ++ 0, 0, NO_SLOW); ++ if (!*cld2) goto nada; ++ ++ if (nyr > 0) { ++ *rest_Ioff = nyb * bt; ++ *rest_Ooff = nyb * b * bt; ++ bt = nyr * vn; ++ *cld2rest = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_2d) ++ (b, ny, bt, ++ bt, 1, 1), ++ I + *rest_Ioff, ++ O + *rest_Ooff), ++ 0, 0, NO_SLOW); ++ if (!*cld2rest) goto nada; ++ } ++ } ++ else { ++ *cld2 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)( ++ X(mktensor_4d) ++ (nyb, b * bt * vn, b * bt * vn, ++ b, vn, bt * vn, ++ bt, b * vn, vn, ++ vn, 1, 1), ++ I, O), ++ 0, 0, NO_SLOW); ++ if (!*cld2) goto nada; ++ ++ *rest_Ioff = *rest_Ooff = nyb * bt * b * vn; ++ *cld2rest = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)( ++ X(mktensor_3d) ++ (b, vn, nyr * vn, ++ nyr, b * vn, vn, ++ vn, 1, 1), ++ I + *rest_Ioff, O + *rest_Ooff), ++ 0, 0, NO_SLOW); ++ if (!*cld2rest) goto nada; ++ ++ if (!(p->flags & TRANSPOSED_IN)) { ++ *cld3 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)( ++ X(mktensor_3d) ++ (p->ny, vn, b * vn, ++ b, p->ny * vn, vn, ++ vn, 1, 1), ++ I, I), ++ 0, 0, NO_SLOW); ++ if (!*cld3) goto nada; ++ } ++ } ++ ++ return 1; ++ ++nada: ++ X(plan_destroy_internal)(*cld3); ++ X(plan_destroy_internal)(*cld2rest); ++ X(plan_destroy_internal)(*cld2); ++ *cld2 = *cld2rest = *cld3 = NULL; ++ return 0; ++} ++ ++static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) ++{ ++ const S *ego = (const S *) ego_; ++ const problem_mpi_transpose *p; ++ P *pln; ++ plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; ++ INT b, bt, vn, rest_Ioff, rest_Ooff; ++ INT *sbs, *sbo, *rbs, *rbo; ++ int pe, my_pe, n_pes, sort_pe = -1, ascending = 1; ++ R *I, *O; ++ static const plan_adt padt = { ++ XM(transpose_solve), awake, print, destroy ++ }; ++ ++ UNUSED(ego); ++ ++ if (!applicable(ego, p_, plnr)) ++ return (plan *) 0; ++ ++ p = (const problem_mpi_transpose *) p_; ++ vn = p->vn; ++ I = p->I; O = p->O; ++ ++ MPI_Comm_rank(p->comm, &my_pe); ++ MPI_Comm_size(p->comm, &n_pes); ++ ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ ++ ++ if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = p->O; ++ ++ if (!(p->flags & TRANSPOSED_OUT)) { /* nx x bt x vn -> bt x nx x vn */ ++ cld1 = X(mkplan_f_d)(plnr, ++ X(mkproblem_rdft_0_d)(X(mktensor_3d) ++ (bt, vn, p->nx * vn, ++ p->nx, bt * vn, vn, ++ vn, 1, 1), ++ I, O = p->O), ++ 0, 0, NO_SLOW); ++ if (XM(any_true)(!cld1, p->comm)) goto nada; ++ ++ } ++ else { ++ if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) ++ O = p->O; ++ else ++ O = p->I; ++ } ++ ++ if (XM(any_true)(!XM(mkplans_pretranspose)(p, plnr, p->I, O, my_pe, ++ &cld2, &cld2rest, &cld3, ++ &rest_Ioff, &rest_Ooff), ++ p->comm)) goto nada; ++ ++ pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); ++ ++ pln->cld1 = cld1; ++ pln->cld2 = cld2; ++ pln->cld2rest = cld2rest; ++ pln->rest_Ioff = rest_Ioff; ++ pln->rest_Ooff = rest_Ooff; ++ pln->cld3 = cld3; ++ pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); ++ ++ MPI_Comm_dup(p->comm, &pln->comm); ++ ++ n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block), ++ XM(num_blocks)(p->ny, p->tblock)); ++ ++ /* Compute sizes/offsets of blocks to exchange between processors */ ++ sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS); ++ sbo = sbs + n_pes; ++ rbs = sbo + n_pes; ++ rbo = rbs + n_pes; ++ b = XM(block)(p->nx, p->block, my_pe); ++ bt = XM(block)(p->ny, p->tblock, my_pe); ++ for (pe = 0; pe < n_pes; ++pe) { ++ INT db, dbt; /* destination block sizes */ ++ db = XM(block)(p->nx, p->block, pe); ++ dbt = XM(block)(p->ny, p->tblock, pe); ++ ++ sbs[pe] = b * dbt * vn; ++ sbo[pe] = pe * (b * p->tblock) * vn; ++ rbs[pe] = db * bt * vn; ++ rbo[pe] = pe * (p->block * bt) * vn; ++ ++ if (db * dbt > 0 && db * p->tblock != p->block * dbt) { ++ A(sort_pe == -1); /* only one process should need sorting */ ++ sort_pe = pe; ++ ascending = db * p->tblock > p->block * dbt; ++ } ++ } ++ pln->n_pes = n_pes; ++ pln->my_pe = my_pe; ++ pln->send_block_sizes = sbs; ++ pln->send_block_offsets = sbo; ++ pln->recv_block_sizes = rbs; ++ pln->recv_block_offsets = rbo; ++ ++ if (my_pe >= n_pes) { ++ pln->sched = 0; /* this process is not doing anything */ ++ } ++ else { ++ pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS); ++ fill1_comm_sched(pln->sched, my_pe, n_pes); ++ if (sort_pe >= 0) ++ sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending); ++ } ++ ++ X(ops_zero)(&pln->super.super.ops); ++ if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); ++ if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); ++ if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); ++ if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); ++ /* FIXME: should MPI operations be counted in "other" somehow? */ ++ ++ return &(pln->super.super); ++ ++ nada: ++ X(plan_destroy_internal)(cld3); ++ X(plan_destroy_internal)(cld2rest); ++ X(plan_destroy_internal)(cld2); ++ X(plan_destroy_internal)(cld1); ++ return (plan *) 0; ++} ++ ++static solver *mksolver(int preserve_input) ++{ ++ static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; ++ S *slv = MKSOLVER(S, &sadt); ++ slv->preserve_input = preserve_input; ++ return &(slv->super); ++} ++ ++void XM(transpose_pairwise_transposed_register)(planner *p) ++{ ++ int preserve_input; ++ for (preserve_input = 0; preserve_input <= 1; ++preserve_input) ++ REGISTER_SOLVER(p, mksolver(preserve_input)); ++} diff --git a/var/spack/repos/builtin/packages/pfft/package.py b/var/spack/repos/builtin/packages/pfft/package.py new file mode 100644 index 0000000000..575f0af3c5 --- /dev/null +++ b/var/spack/repos/builtin/packages/pfft/package.py @@ -0,0 +1,64 @@ +############################################################################## +# Copyright (c) 2013-2016, Lawrence Livermore National Security, LLC. +# Produced at the Lawrence Livermore National Laboratory. +# +# This file is part of Spack. +# Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. +# LLNL-CODE-647188 +# +# For details, see https://github.com/llnl/spack +# Please also see the LICENSE file for our notice and the LGPL. +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU Lesser General Public License (as +# published by the Free Software Foundation) version 2.1, February 1999. +# +# This program is distributed in the hope that it will be useful, but +# WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and +# conditions of the GNU Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this program; if not, write to the Free Software +# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +############################################################################## +from spack import * + + +class Pfft(AutotoolsPackage): + """PFFT is a software library for computing massively parallel, + fast Fourier transformations on distributed memory architectures. + PFFT can be understood as a generalization of FFTW-MPI to + multidimensional data decomposition.""" + + homepage = "https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/software.php.en" + url = "https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/software/pfft-1.0.8-alpha.tar.gz" + + version('1.0.8-alpha', '46457fbe8e38d02ff87d439b63dc0709') + + depends_on('fftw+mpi+pfft_patches') + depends_on('mpi') + + def install(self, spec, prefix): + options = ['--prefix={0}'.format(prefix)] + if not self.compiler.f77 or not self.compiler.fc: + options.append("--disable-fortran") + + configure(*options) + make() + if self.run_tests: + make("check") + make("install") + + if '+float' in spec['fftw']: + configure('--enable-float', *options) + make() + if self.run_tests: + make("check") + make("install") + if '+long_double' in spec['fftw']: + configure('--enable-long-double', *options) + make() + if self.run_tests: + make("check") + make("install") |