diff options
-rw-r--r-- | var/spack/repos/builtin/packages/racon/aarch64.patch | 2806 | ||||
-rw-r--r-- | var/spack/repos/builtin/packages/racon/package.py | 6 |
2 files changed, 2808 insertions, 4 deletions
diff --git a/var/spack/repos/builtin/packages/racon/aarch64.patch b/var/spack/repos/builtin/packages/racon/aarch64.patch new file mode 100644 index 0000000000..332be1179d --- /dev/null +++ b/var/spack/repos/builtin/packages/racon/aarch64.patch @@ -0,0 +1,2806 @@ +diff --git a/vendor/spoa/include/arch/aarch64/sse2neon.h b/vendor/spoa/include/arch/aarch64/sse2neon.h +new file mode 100644 +index 0000000..1477ae1 +--- /dev/null ++++ b/vendor/spoa/include/arch/aarch64/sse2neon.h +@@ -0,0 +1,2783 @@ ++#ifndef SSE2NEON_H ++#define SSE2NEON_H ++ ++// This header file provides a simple API translation layer ++// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions ++// ++// This header file does not yet translate all of the SSE intrinsics. ++// ++// Contributors to this work are: ++// John W. Ratcliff <jratcliffscarab@gmail.com> ++// Brandon Rowlett <browlett@nvidia.com> ++// Ken Fast <kfast@gdeb.com> ++// Eric van Beurden <evanbeurden@nvidia.com> ++// Alexander Potylitsin <apotylitsin@nvidia.com> ++// Hasindu Gamaarachchi <hasindu2008@gmail.com> ++// Jim Huang <jserv@biilabs.io> ++// Mark Cheng <marktwtn@biilabs.io> ++// Malcolm James MacLeod <malcolm@gulden.com> ++ ++/* ++ * The MIT license: ++ * ++ * Permission is hereby granted, free of charge, to any person obtaining a copy ++ * of this software and associated documentation files (the "Software"), to deal ++ * in the Software without restriction, including without limitation the rights ++ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ++ * copies of the Software, and to permit persons to whom the Software is ++ * furnished to do so, subject to the following conditions: ++ * ++ * The above copyright notice and this permission notice shall be included in ++ * all copies or substantial portions of the Software. ++ * ++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ++ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ++ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ++ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ++ * SOFTWARE. ++ */ ++ ++#if defined(__GNUC__) || defined(__clang__) ++ ++#pragma push_macro("FORCE_INLINE") ++#pragma push_macro("ALIGN_STRUCT") ++#define FORCE_INLINE static inline __attribute__((always_inline)) ++#define ALIGN_STRUCT(x) __attribute__((aligned(x))) ++ ++#else ++ ++#error "Macro name collisions may happens with unknown compiler" ++#ifdef FORCE_INLINE ++#undef FORCE_INLINE ++#endif ++#define FORCE_INLINE static inline ++#ifndef ALIGN_STRUCT ++#define ALIGN_STRUCT(x) __declspec(align(x)) ++#endif ++ ++#endif ++ ++#include <stdint.h> ++ ++#include "arm_neon.h" ++ ++/** ++ * MACRO for shuffle parameter for _mm_shuffle_ps(). ++ * Argument fp3 is a digit[0123] that represents the fp from argument "b" ++ * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same ++ * for fp2 in result. fp1 is a digit[0123] that represents the fp from ++ * argument "a" of mm_shuffle_ps that will be places in fp1 of result. ++ * fp0 is the same for fp0 of result. ++ */ ++#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ ++ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) ++ ++/* indicate immediate constant argument in a given range */ ++#define __constrange(a, b) const ++ ++typedef float32x2_t __m64; ++typedef float32x4_t __m128; ++typedef int32x4_t __m128i; ++ ++// ****************************************** ++// type-safe casting between types ++// ****************************************** ++ ++#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x) ++#define vreinterpretq_m128_f32(x) (x) ++#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x) ++ ++#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x) ++#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x) ++#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x) ++#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x) ++ ++#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x) ++#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x) ++#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x) ++#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x) ++ ++#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x) ++#define vreinterpretq_f32_m128(x) (x) ++#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x) ++ ++#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x) ++#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x) ++#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x) ++#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x) ++ ++#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x) ++#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x) ++#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x) ++#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x) ++ ++#define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x) ++#define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x) ++#define vreinterpretq_m128i_s32(x) (x) ++#define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x) ++ ++#define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x) ++#define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x) ++#define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x) ++#define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x) ++ ++#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x) ++#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x) ++#define vreinterpretq_s32_m128i(x) (x) ++#define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x) ++ ++#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x) ++#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x) ++#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x) ++#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x) ++ ++// A struct is defined in this header file called 'SIMDVec' which can be used ++// by applications which attempt to access the contents of an _m128 struct ++// directly. It is important to note that accessing the __m128 struct directly ++// is bad coding practice by Microsoft: @see: ++// https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx ++// ++// However, some legacy source code may try to access the contents of an __m128 ++// struct directly so the developer can use the SIMDVec as an alias for it. Any ++// casting must be done manually by the developer, as you cannot cast or ++// otherwise alias the base NEON data type for intrinsic operations. ++// ++// union intended to allow direct access to an __m128 variable using the names ++// that the MSVC compiler provides. This union should really only be used when ++// trying to access the members of the vector as integer values. GCC/clang ++// allow native access to the float members through a simple array access ++// operator (in C since 4.6, in C++ since 4.8). ++// ++// Ideally direct accesses to SIMD vectors should not be used since it can cause ++// a performance hit. If it really is needed however, the original __m128 ++// variable can be aliased with a pointer to this union and used to access ++// individual components. The use of this union should be hidden behind a macro ++// that is used throughout the codebase to access the members instead of always ++// declaring this type of variable. ++typedef union ALIGN_STRUCT(16) SIMDVec { ++ float ++ m128_f32[4]; // as floats - do not to use this. Added for convenience. ++ int8_t m128_i8[16]; // as signed 8-bit integers. ++ int16_t m128_i16[8]; // as signed 16-bit integers. ++ int32_t m128_i32[4]; // as signed 32-bit integers. ++ int64_t m128_i64[2]; // as signed 64-bit integers. ++ uint8_t m128_u8[16]; // as unsigned 8-bit integers. ++ uint16_t m128_u16[8]; // as unsigned 16-bit integers. ++ uint32_t m128_u32[4]; // as unsigned 32-bit integers. ++ uint64_t m128_u64[2]; // as unsigned 64-bit integers. ++} SIMDVec; ++ ++// casting using SIMDVec ++#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n]) ++#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n]) ++ ++ ++// ****************************************** ++// Backwards compatibility for compilers with lack of specific type support ++// ****************************************** ++ ++// Older gcc does not define vld1q_u8_x4 type ++#if defined(__GNUC__) && !defined(__clang__) ++#if __GNUC__ < 9 || (__GNUC__ == 9 && (__GNUC_MINOR__ <= 2)) ++FORCE_INLINE uint8x16x4_t vld1q_u8_x4(const uint8_t *p) ++{ ++ uint8x16x4_t ret; ++ ret.val[0] = vld1q_u8(p + 0); ++ ret.val[1] = vld1q_u8(p + 16); ++ ret.val[2] = vld1q_u8(p + 32); ++ ret.val[3] = vld1q_u8(p + 48); ++ return ret; ++} ++#endif ++#endif ++ ++ ++// ****************************************** ++// Set/get methods ++// ****************************************** ++ ++// Loads one cache line of data from address p to a location closer to the ++// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx ++FORCE_INLINE void _mm_prefetch(const void *p, int i) ++{ ++ __builtin_prefetch(p); ++} ++ ++// extracts the lower order floating point value from the parameter : ++// https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396 ++FORCE_INLINE float _mm_cvtss_f32(__m128 a) ++{ ++ return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++} ++ ++// Sets the 128-bit value to zero ++// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_setzero_si128(void) ++{ ++ return vreinterpretq_m128i_s32(vdupq_n_s32(0)); ++} ++ ++// Clears the four single-precision, floating-point values. ++// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_setzero_ps(void) ++{ ++ return vreinterpretq_m128_f32(vdupq_n_f32(0)); ++} ++ ++// Sets the four single-precision, floating-point values to w. ++// ++// r0 := r1 := r2 := r3 := w ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_set1_ps(float _w) ++{ ++ return vreinterpretq_m128_f32(vdupq_n_f32(_w)); ++} ++ ++// Sets the four single-precision, floating-point values to w. ++// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_set_ps1(float _w) ++{ ++ return vreinterpretq_m128_f32(vdupq_n_f32(_w)); ++} ++ ++// Sets the four single-precision, floating-point values to the four inputs. ++// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) ++{ ++ float __attribute__((aligned(16))) data[4] = {x, y, z, w}; ++ return vreinterpretq_m128_f32(vld1q_f32(data)); ++} ++ ++// Sets the four single-precision, floating-point values to the four inputs in ++// reverse order. ++// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) ++{ ++ float __attribute__((aligned(16))) data[4] = {w, z, y, x}; ++ return vreinterpretq_m128_f32(vld1q_f32(data)); ++} ++ ++// Sets the 8 signed 16-bit integer values in reverse order. ++// ++// Return Value ++// r0 := w0 ++// r1 := w1 ++// ... ++// r7 := w7 ++FORCE_INLINE __m128i _mm_setr_epi16(short w0, ++ short w1, ++ short w2, ++ short w3, ++ short w4, ++ short w5, ++ short w6, ++ short w7) ++{ ++ int16_t __attribute__((aligned(16))) ++ data[8] = {w0, w1, w2, w3, w4, w5, w6, w7}; ++ return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); ++} ++ ++// Sets the 4 signed 32-bit integer values in reverse order ++// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) ++{ ++ int32_t __attribute__((aligned(16))) data[4] = {i3, i2, i1, i0}; ++ return vreinterpretq_m128i_s32(vld1q_s32(data)); ++} ++ ++// Sets the 16 signed 8-bit integer values to b. ++// ++// r0 := b ++// r1 := b ++// ... ++// r15 := b ++// ++// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_set1_epi8(char w) ++{ ++ return vreinterpretq_m128i_s8(vdupq_n_s8(w)); ++} ++ ++// Sets the 8 signed 16-bit integer values to w. ++// ++// r0 := w ++// r1 := w ++// ... ++// r7 := w ++// ++// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_set1_epi16(short w) ++{ ++ return vreinterpretq_m128i_s16(vdupq_n_s16(w)); ++} ++ ++// Sets the 16 signed 8-bit integer values. ++// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_set_epi8(char b15, ++ char b14, ++ char b13, ++ char b12, ++ char b11, ++ char b10, ++ char b9, ++ char b8, ++ char b7, ++ char b6, ++ char b5, ++ char b4, ++ char b3, ++ char b2, ++ char b1, ++ char b0) ++{ ++ int8_t __attribute__((aligned(16))) ++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, ++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, ++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, ++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; ++ return (__m128i) vld1q_s8(data); ++} ++ ++// Sets the 8 signed 16-bit integer values. ++// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_set_epi16(short i7, ++ short i6, ++ short i5, ++ short i4, ++ short i3, ++ short i2, ++ short i1, ++ short i0) ++{ ++ int16_t __attribute__((aligned(16))) ++ data[8] = {i0, i1, i2, i3, i4, i5, i6, i7}; ++ return vreinterpretq_m128i_s16(vld1q_s16(data)); ++} ++ ++// Sets the 16 signed 8-bit integer values in reverse order. ++// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_setr_epi8(char b0, ++ char b1, ++ char b2, ++ char b3, ++ char b4, ++ char b5, ++ char b6, ++ char b7, ++ char b8, ++ char b9, ++ char b10, ++ char b11, ++ char b12, ++ char b13, ++ char b14, ++ char b15) ++{ ++ int8_t __attribute__((aligned(16))) ++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, ++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, ++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, ++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; ++ return (__m128i) vld1q_s8(data); ++} ++ ++// Sets the 4 signed 32-bit integer values to i. ++// ++// r0 := i ++// r1 := i ++// r2 := i ++// r3 := I ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_set1_epi32(int _i) ++{ ++ return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); ++} ++ ++// Sets the 4 signed 64-bit integer values to i. ++// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_set1_epi64(int64_t _i) ++{ ++ return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); ++} ++ ++// Sets the 4 signed 32-bit integer values. ++// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) ++{ ++ int32_t __attribute__((aligned(16))) data[4] = {i0, i1, i2, i3}; ++ return vreinterpretq_m128i_s32(vld1q_s32(data)); ++} ++ ++// Returns the __m128i structure with its two 64-bit integer values ++// initialized to the values of the two 64-bit integers passed in. ++// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx ++FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) ++{ ++ int64_t __attribute__((aligned(16))) data[2] = {i2, i1}; ++ return vreinterpretq_m128i_s64(vld1q_s64(data)); ++} ++ ++// Stores four single-precision, floating-point values. ++// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx ++FORCE_INLINE void _mm_store_ps(float *p, __m128 a) ++{ ++ vst1q_f32(p, vreinterpretq_f32_m128(a)); ++} ++ ++// Stores four single-precision, floating-point values. ++// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx ++FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) ++{ ++ vst1q_f32(p, vreinterpretq_f32_m128(a)); ++} ++ ++// Stores four 32-bit integer values as (as a __m128i value) at the address p. ++// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx ++FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) ++{ ++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); ++} ++ ++// Stores four 32-bit integer values as (as a __m128i value) at the address p. ++// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx ++FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) ++{ ++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); ++} ++ ++// Stores the lower single - precision, floating - point value. ++// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx ++FORCE_INLINE void _mm_store_ss(float *p, __m128 a) ++{ ++ vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); ++} ++ ++// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. ++// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx ++FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) ++{ ++ uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); ++ uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); ++ *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); ++} ++ ++// Stores the lower two single-precision floating point values of a to the ++// address p. ++// ++// *p0 := b0 ++// *p1 := b1 ++// ++// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx ++FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) ++{ ++ *p = vget_low_f32(a); ++} ++ ++// Loads a single single-precision, floating-point value, copying it into all ++// four words ++// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_load1_ps(const float *p) ++{ ++ return vreinterpretq_m128_f32(vld1q_dup_f32(p)); ++} ++#define _mm_load_ps1 _mm_load1_ps ++ ++// Sets the lower two single-precision, floating-point values with 64 ++// bits of data loaded from the address p; the upper two values are passed ++// through from a. ++// ++// Return Value ++// r0 := *p0 ++// r1 := *p1 ++// r2 := a2 ++// r3 := a3 ++// ++// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *b) ++{ ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vld1_f32((const float32_t *) b), vget_high_f32(a))); ++} ++ ++// Loads four single-precision, floating-point values. ++// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_load_ps(const float *p) ++{ ++ return vreinterpretq_m128_f32(vld1q_f32(p)); ++} ++ ++// Loads four single-precision, floating-point values. ++// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx ++FORCE_INLINE __m128 _mm_loadu_ps(const float *p) ++{ ++ // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are ++ // equivalent for neon ++ return vreinterpretq_m128_f32(vld1q_f32(p)); ++} ++ ++// Loads an single - precision, floating - point value into the low word and ++// clears the upper three words. ++// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx ++FORCE_INLINE __m128 _mm_load_ss(const float *p) ++{ ++ return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); ++} ++ ++FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) ++{ ++ /* Load the lower 64 bits of the value pointed to by p into the ++ * lower 64 bits of the result, zeroing the upper 64 bits of the result. ++ */ ++ return vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)); ++} ++ ++// ****************************************** ++// Logic/Binary operations ++// ****************************************** ++ ++// Compares for inequality. ++// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32(vmvnq_u32( ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); ++} ++ ++// Computes the bitwise AND-NOT of the four single-precision, floating-point ++// values of a and b. ++// ++// r0 := ~a0 & b0 ++// r1 := ~a1 & b1 ++// r2 := ~a2 & b2 ++// r3 := ~a3 & b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ vbicq_s32(vreinterpretq_s32_m128(b), ++ vreinterpretq_s32_m128(a))); // *NOTE* argument swap ++} ++ ++// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the ++// 128-bit value in a. ++// ++// r := (~a) & b ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vbicq_s32(vreinterpretq_s32_m128i(b), ++ vreinterpretq_s32_m128i(a))); // *NOTE* argument swap ++} ++ ++// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in ++// b. ++// ++// r := a & b ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Computes the bitwise AND of the four single-precision, floating-point values ++// of a and b. ++// ++// r0 := a0 & b0 ++// r1 := a1 & b1 ++// r2 := a2 & b2 ++// r3 := a3 & b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); ++} ++ ++// Computes the bitwise OR of the four single-precision, floating-point values ++// of a and b. ++// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); ++} ++ ++// Computes bitwise EXOR (exclusive-or) of the four single-precision, ++// floating-point values of a and b. ++// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_s32( ++ veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); ++} ++ ++// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. ++// ++// r := a | b ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in ++// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Moves the upper two values of B into the lower two values of A. ++// ++// r3 := a3 ++// r2 := a2 ++// r1 := b3 ++// r0 := b2 ++FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) ++{ ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A)); ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B)); ++ return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); ++} ++ ++// Moves the lower two values of B into the upper two values of A. ++// ++// r3 := b1 ++// r2 := b0 ++// r1 := a1 ++// r0 := a0 ++FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B)); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); ++} ++ ++// NEON does not provide this method ++// Creates a 4-bit mask from the most significant bits of the four ++// single-precision, floating-point values. ++// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx ++FORCE_INLINE int _mm_movemask_ps(__m128 a) ++{ ++#if 0 /* C version */ ++ uint32x4_t &ia = *(uint32x4_t *) &a; ++ return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) | ++ ((ia[3] >> 28) & 8); ++#endif ++ static const uint32x4_t movemask = {1, 2, 4, 8}; ++ static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000, ++ 0x80000000}; ++ uint32x4_t t0 = vreinterpretq_u32_m128(a); ++ uint32x4_t t1 = vtstq_u32(t0, highbit); ++ uint32x4_t t2 = vandq_u32(t1, movemask); ++ uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2)); ++ return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1); ++} ++ ++FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) ++{ ++ return vqabsq_s32(a); ++} ++ ++FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) ++{ ++ return vreinterpretq_s32_s16(vqabsq_s16(vreinterpretq_s16_s32(a))); ++} ++ ++// Takes the upper 64 bits of a and places it in the low end of the result ++// Takes the lower 64 bits of b and places it into the high end of the result. ++FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) ++{ ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); ++} ++ ++// takes the lower two 32-bit values from a and swaps them and places in high ++// end of result takes the higher two 32 bit values from b and swaps them and ++// places in low end of result. ++FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) ++{ ++ float32x2_t a21 = vget_high_f32( ++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); ++ float32x2_t b03 = vget_low_f32( ++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); ++ return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) ++{ ++ float32x2_t a03 = vget_low_f32( ++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); ++ float32x2_t b21 = vget_high_f32( ++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); ++ return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); ++} ++ ++// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the ++// high ++FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) ++{ ++ float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) ++{ ++ float32x2_t a22 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) ++{ ++ float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); ++ float32x2_t b22 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) ++{ ++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); ++ float32x2_t a22 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); ++ float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/ ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) ++{ ++ float32x2_t a33 = ++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); ++ float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) ++{ ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ float32x2_t b20 = vset_lane_f32(b2, b00, 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) ++{ ++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); ++ float32_t b2 = vgetq_lane_f32(b, 2); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ float32x2_t b20 = vset_lane_f32(b2, b00, 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); ++} ++ ++FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) ++{ ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32_t b2 = vgetq_lane_f32(b, 2); ++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); ++ float32x2_t b20 = vset_lane_f32(b2, b00, 1); ++ return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); ++} ++ ++// NEON does not support a general purpose permute intrinsic ++// Selects four specific single-precision, floating-point values from a and b, ++// based on the mask i. ++// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx ++#if 0 /* C version */ ++FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a, ++ __m128 b, ++ __constrange(0, 255) int imm) ++{ ++ __m128 ret; ++ ret[0] = a[imm & 0x3]; ++ ret[1] = a[(imm >> 2) & 0x3]; ++ ret[2] = b[(imm >> 4) & 0x03]; ++ ret[3] = b[(imm >> 6) & 0x03]; ++ return ret; ++} ++#endif ++#define _mm_shuffle_ps_default(a, b, imm) \ ++ ({ \ ++ float32x4_t ret; \ ++ ret = vmovq_n_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) &0x3)); \ ++ ret = vsetq_lane_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \ ++ ret, 1); \ ++ ret = vsetq_lane_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \ ++ ret, 2); \ ++ ret = vsetq_lane_f32( \ ++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \ ++ ret, 3); \ ++ vreinterpretq_m128_f32(ret); \ ++ }) ++ ++// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) ++// int imm) ++#define _mm_shuffle_ps(a, b, imm) \ ++ ({ \ ++ __m128 ret; \ ++ switch (imm) { \ ++ case _MM_SHUFFLE(1, 0, 3, 2): \ ++ ret = _mm_shuffle_ps_1032((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 3, 0, 1): \ ++ ret = _mm_shuffle_ps_2301((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 3, 2, 1): \ ++ ret = _mm_shuffle_ps_0321((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 1, 0, 3): \ ++ ret = _mm_shuffle_ps_2103((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 1, 0): \ ++ ret = _mm_movelh_ps((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 0, 1): \ ++ ret = _mm_shuffle_ps_1001((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 1, 0, 1): \ ++ ret = _mm_shuffle_ps_0101((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(3, 2, 1, 0): \ ++ ret = _mm_shuffle_ps_3210((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 0, 1, 1): \ ++ ret = _mm_shuffle_ps_0011((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 0, 2, 2): \ ++ ret = _mm_shuffle_ps_0022((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 2, 0, 0): \ ++ ret = _mm_shuffle_ps_2200((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(3, 2, 0, 2): \ ++ ret = _mm_shuffle_ps_3202((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(3, 2, 3, 2): \ ++ ret = _mm_movehl_ps((b), (a)); \ ++ break; \ ++ case _MM_SHUFFLE(1, 1, 3, 3): \ ++ ret = _mm_shuffle_ps_1133((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 0, 1, 0): \ ++ ret = _mm_shuffle_ps_2010((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 0, 0, 1): \ ++ ret = _mm_shuffle_ps_2001((a), (b)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 0, 3, 2): \ ++ ret = _mm_shuffle_ps_2032((a), (b)); \ ++ break; \ ++ default: \ ++ ret = _mm_shuffle_ps_default((a), (b), (imm)); \ ++ break; \ ++ } \ ++ ret; \ ++ }) ++ ++// Takes the upper 64 bits of a and places it in the low end of the result ++// Takes the lower 64 bits of a and places it into the high end of the result. ++FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) ++{ ++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); ++} ++ ++// takes the lower two 32-bit values from a and swaps them and places in low end ++// of result takes the higher two 32 bit values from a and swaps them and places ++// in high end of result. ++FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) ++{ ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); ++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); ++} ++ ++// rotates the least significant 32 bits into the most signficant 32 bits, and ++// shifts the rest down ++FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) ++{ ++ return vreinterpretq_m128i_s32( ++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); ++} ++ ++// rotates the most significant 32 bits into the least signficant 32 bits, and ++// shifts the rest up ++FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) ++{ ++ return vreinterpretq_m128i_s32( ++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); ++} ++ ++// gets the lower 64 bits of a, and places it in the upper 64 bits ++// gets the lower 64 bits of a and places it in the lower 64 bits ++FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) ++{ ++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); ++} ++ ++// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the ++// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits ++FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) ++{ ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); ++} ++ ++// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the ++// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and ++// places it in the lower 64 bits ++FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) ++{ ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); ++} ++ ++FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) ++{ ++ int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); ++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); ++ return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); ++} ++ ++FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) ++{ ++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); ++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); ++ return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); ++} ++ ++FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) ++{ ++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); ++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); ++} ++ ++// Shuffle packed 8-bit integers in a according to shuffle control mask in the ++// corresponding 8-bit element of b, and store the results in dst. ++// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8&expand=5146 ++FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) ++{ ++#if __aarch64__ ++ int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a ++ uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b ++ uint8_t __attribute__((aligned(16))) ++ mask[16] = {0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, ++ 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F}; ++ uint8x16_t idx_masked = ++ vandq_u8(idx, vld1q_u8(mask)); // avoid using meaningless bits ++ ++ return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); ++#else ++ uint8_t *tbl = (uint8_t *) &a; // input a ++ uint8_t *idx = (uint8_t *) &b; // input b ++ int32_t r[4]; ++ ++ r[0] = ((idx[3] & 0x80) ? 0 : tbl[idx[3] % 16]) << 24; ++ r[0] |= ((idx[2] & 0x80) ? 0 : tbl[idx[2] % 16]) << 16; ++ r[0] |= ((idx[1] & 0x80) ? 0 : tbl[idx[1] % 16]) << 8; ++ r[0] |= ((idx[0] & 0x80) ? 0 : tbl[idx[0] % 16]); ++ ++ r[1] = ((idx[7] & 0x80) ? 0 : tbl[idx[7] % 16]) << 24; ++ r[1] |= ((idx[6] & 0x80) ? 0 : tbl[idx[6] % 16]) << 16; ++ r[1] |= ((idx[5] & 0x80) ? 0 : tbl[idx[5] % 16]) << 8; ++ r[1] |= ((idx[4] & 0x80) ? 0 : tbl[idx[4] % 16]); ++ ++ r[2] = ((idx[11] & 0x80) ? 0 : tbl[idx[11] % 16]) << 24; ++ r[2] |= ((idx[10] & 0x80) ? 0 : tbl[idx[10] % 16]) << 16; ++ r[2] |= ((idx[9] & 0x80) ? 0 : tbl[idx[9] % 16]) << 8; ++ r[2] |= ((idx[8] & 0x80) ? 0 : tbl[idx[8] % 16]); ++ ++ r[3] = ((idx[15] & 0x80) ? 0 : tbl[idx[15] % 16]) << 24; ++ r[3] |= ((idx[14] & 0x80) ? 0 : tbl[idx[14] % 16]) << 16; ++ r[3] |= ((idx[13] & 0x80) ? 0 : tbl[idx[13] % 16]) << 8; ++ r[3] |= ((idx[12] & 0x80) ? 0 : tbl[idx[12] % 16]); ++ ++ return vld1q_s32(r); ++#endif ++} ++ ++ ++#if 0 /* C version */ ++FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, ++ __constrange(0, 255) int imm) ++{ ++ __m128i ret; ++ ret[0] = a[imm & 0x3]; ++ ret[1] = a[(imm >> 2) & 0x3]; ++ ret[2] = a[(imm >> 4) & 0x03]; ++ ret[3] = a[(imm >> 6) & 0x03]; ++ return ret; ++} ++#endif ++#define _mm_shuffle_epi32_default(a, imm) \ ++ ({ \ ++ int32x4_t ret; \ ++ ret = vmovq_n_s32( \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) &0x3)); \ ++ ret = vsetq_lane_s32( \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \ ++ ret, 1); \ ++ ret = vsetq_lane_s32( \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ ++ ret, 2); \ ++ ret = vsetq_lane_s32( \ ++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ ++ ret, 3); \ ++ vreinterpretq_m128i_s32(ret); \ ++ }) ++ ++// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) ++// int imm) ++#if defined(__aarch64__) ++#define _mm_shuffle_epi32_splat(a, imm) \ ++ ({ \ ++ vreinterpretq_m128i_s32( \ ++ vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ ++ }) ++#else ++#define _mm_shuffle_epi32_splat(a, imm) \ ++ ({ \ ++ vreinterpretq_m128i_s32( \ ++ vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ ++ }) ++#endif ++ ++// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. ++// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx ++// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, __constrange(0,255) int ++// imm) ++#define _mm_shuffle_epi32(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ switch (imm) { \ ++ case _MM_SHUFFLE(1, 0, 3, 2): \ ++ ret = _mm_shuffle_epi_1032((a)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 3, 0, 1): \ ++ ret = _mm_shuffle_epi_2301((a)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 3, 2, 1): \ ++ ret = _mm_shuffle_epi_0321((a)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 1, 0, 3): \ ++ ret = _mm_shuffle_epi_2103((a)); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 1, 0): \ ++ ret = _mm_shuffle_epi_1010((a)); \ ++ break; \ ++ case _MM_SHUFFLE(1, 0, 0, 1): \ ++ ret = _mm_shuffle_epi_1001((a)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 1, 0, 1): \ ++ ret = _mm_shuffle_epi_0101((a)); \ ++ break; \ ++ case _MM_SHUFFLE(2, 2, 1, 1): \ ++ ret = _mm_shuffle_epi_2211((a)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 1, 2, 2): \ ++ ret = _mm_shuffle_epi_0122((a)); \ ++ break; \ ++ case _MM_SHUFFLE(3, 3, 3, 2): \ ++ ret = _mm_shuffle_epi_3332((a)); \ ++ break; \ ++ case _MM_SHUFFLE(0, 0, 0, 0): \ ++ ret = _mm_shuffle_epi32_splat((a), 0); \ ++ break; \ ++ case _MM_SHUFFLE(1, 1, 1, 1): \ ++ ret = _mm_shuffle_epi32_splat((a), 1); \ ++ break; \ ++ case _MM_SHUFFLE(2, 2, 2, 2): \ ++ ret = _mm_shuffle_epi32_splat((a), 2); \ ++ break; \ ++ case _MM_SHUFFLE(3, 3, 3, 3): \ ++ ret = _mm_shuffle_epi32_splat((a), 3); \ ++ break; \ ++ default: \ ++ ret = _mm_shuffle_epi32_default((a), (imm)); \ ++ break; \ ++ } \ ++ ret; \ ++ }) ++ ++// Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified ++// by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx ++// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, ++// __constrange(0,255) int imm) ++#define _mm_shufflelo_epi16_function(a, imm) \ ++ ({ \ ++ int16x8_t ret = vreinterpretq_s16_s32(a); \ ++ int16x4_t lowBits = vget_low_s16(ret); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) &0x3), ret, 4); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ ++ 5); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \ ++ 6); \ ++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ ++ 7); \ ++ vreinterpretq_s32_s16(ret); \ ++ }) ++ ++// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int ++// imm) ++#define _mm_shufflelo_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) ++ ++// Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified ++// by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx ++// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, ++// __constrange(0,255) int imm) ++#define _mm_shufflehi_epi16_function(a, imm) \ ++ ({ \ ++ int16x8_t ret = vreinterpretq_s16_s32(a); \ ++ int16x4_t highBits = vget_high_s16(ret); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) &0x3), ret, 4); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ ++ 5); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \ ++ 6); \ ++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ ++ 7); \ ++ vreinterpretq_s32_s16(ret); \ ++ }) ++ ++// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int ++// imm) ++#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) ++ ++// Shifts the 4 signed 32-bit integers in a right by count bits while shifting ++// in the sign bit. ++// ++// r0 := a0 >> count ++// r1 := a1 >> count ++// r2 := a2 >> count ++// r3 := a3 >> count immediate ++FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, int count) ++{ ++ return vshlq_s32(a, vdupq_n_s32(-count)); ++} ++ ++// Shifts the 8 signed 16-bit integers in a right by count bits while shifting ++// in the sign bit. ++// ++// r0 := a0 >> count ++// r1 := a1 >> count ++// ... ++// r7 := a7 >> count ++FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int count) ++{ ++ return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count)); ++} ++ ++// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while ++// shifting in zeros. ++// ++// r0 := a0 << count ++// r1 := a1 << count ++// ... ++// r7 := a7 << count ++// ++// https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx ++#define _mm_slli_epi16(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 31) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s16( \ ++ vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while ++// shifting in zeros. : ++// https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx ++// FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm) ++#define _mm_slli_epi32(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 31) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s32( \ ++ vshlq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and ++// store the results in dst. ++#define _mm_slli_epi64(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 63) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s64( \ ++ vshlq_n_s64(vreinterpretq_s64_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shifts the 8 signed or unsigned 16-bit integers in a right by count bits ++// while shifting in zeros. ++// ++// r0 := srl(a0, count) ++// r1 := srl(a1, count) ++// ... ++// r7 := srl(a7, count) ++// ++// https://msdn.microsoft.com/en-us/library/6tcwd38t(v=vs.90).aspx ++#define _mm_srli_epi16(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 31) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_u16( \ ++ vshrq_n_u16(vreinterpretq_u16_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shifts the 4 signed or unsigned 32-bit integers in a right by count bits ++// while shifting in zeros. ++// https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx FORCE_INLINE ++// __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) ++#define _mm_srli_epi32(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 31) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_u32( \ ++ vshrq_n_u32(vreinterpretq_u32_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and ++// store the results in dst. ++#define _mm_srli_epi64(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 63) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_u64( \ ++ vshrq_n_u64(vreinterpretq_u64_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shifts the 4 signed 32 - bit integers in a right by count bits while shifting ++// in the sign bit. ++// https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx ++// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) ++#define _mm_srai_epi32(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 31) { \ ++ ret = vreinterpretq_m128i_s32( \ ++ vshrq_n_s32(vreinterpretq_s32_m128i(a), 16)); \ ++ ret = vreinterpretq_m128i_s32( \ ++ vshrq_n_s32(vreinterpretq_s32_m128i(ret), 16)); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s32( \ ++ vshrq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shifts the 128 - bit value in a right by imm bytes while shifting in ++// zeros.imm must be an immediate. ++// ++// r := srl(a, imm*8) ++// ++// https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx ++// FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm) ++#define _mm_srli_si128(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 15) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s8( \ ++ vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm ++// must be an immediate. ++// ++// r := a << (imm * 8) ++// ++// https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx ++// FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm) ++#define _mm_slli_si128(a, imm) \ ++ ({ \ ++ __m128i ret; \ ++ if ((imm) <= 0) { \ ++ ret = a; \ ++ } else if ((imm) > 15) { \ ++ ret = _mm_setzero_si128(); \ ++ } else { \ ++ ret = vreinterpretq_m128i_s8(vextq_s8( \ ++ vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \ ++ } \ ++ ret; \ ++ }) ++ ++// NEON does not provide a version of this function, here is an article about ++// some ways to repro the results. ++// http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon ++// Creates a 16-bit mask from the most significant bits of the 16 signed or ++// unsigned 8-bit integers in a and zero extends the upper bits. ++// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx ++FORCE_INLINE int _mm_movemask_epi8(__m128i _a) ++{ ++ uint8x16_t input = vreinterpretq_u8_m128i(_a); ++ static const int8_t __attribute__((aligned(16))) ++ xr[8] = {-7, -6, -5, -4, -3, -2, -1, 0}; ++ uint8x8_t mask_and = vdup_n_u8(0x80); ++ int8x8_t mask_shift = vld1_s8(xr); ++ ++ uint8x8_t lo = vget_low_u8(input); ++ uint8x8_t hi = vget_high_u8(input); ++ ++ lo = vand_u8(lo, mask_and); ++ lo = vshl_u8(lo, mask_shift); ++ ++ hi = vand_u8(hi, mask_and); ++ hi = vshl_u8(hi, mask_shift); ++ ++ lo = vpadd_u8(lo, lo); ++ lo = vpadd_u8(lo, lo); ++ lo = vpadd_u8(lo, lo); ++ ++ hi = vpadd_u8(hi, hi); ++ hi = vpadd_u8(hi, hi); ++ hi = vpadd_u8(hi, hi); ++ ++ return ((hi[0] << 8) | (lo[0] & 0xFF)); ++} ++ ++// Compute the bitwise AND of 128 bits (representing integer data) in a and ++// mask, and return 1 if the result is zero, otherwise return 0. ++// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros&expand=5871 ++FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) ++{ ++ int64x2_t a_and_mask = ++ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask)); ++ return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0 ++ : 1; ++} ++ ++// ****************************************** ++// Math operations ++// ****************************************** ++ ++// Subtracts the four single-precision, floating-point values of a and b. ++// ++// r0 := a0 - b0 ++// r1 := a1 - b1 ++// r2 := a2 - b2 ++// r3 := a3 - b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a, ++// and store the results in dst. ++// r0 := a0 - b0 ++// r1 := a1 - b1 ++FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s64( ++ vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); ++} ++ ++// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or ++// unsigned 32-bit integers of a. ++// ++// r0 := a0 - b0 ++// r1 := a1 - b1 ++// r2 := a2 - b2 ++// r3 := a3 - b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128_f32( ++ vsubq_s32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit ++// integers of a and saturates.. ++// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); ++} ++ ++// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit ++// integers of a and saturates. ++// ++// r0 := UnsignedSaturate(a0 - b0) ++// r1 := UnsignedSaturate(a1 - b1) ++// ... ++// r15 := UnsignedSaturate(a15 - b15) ++// ++// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90) ++FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers ++// of a and saturates. ++// ++// r0 := SignedSaturate(a0 - b0) ++// r1 := SignedSaturate(a1 - b1) ++// ... ++// r7 := SignedSaturate(a7 - b7) ++FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); ++} ++ ++FORCE_INLINE __m128i _mm_sign_epi32(__m128i a, __m128i b) ++{ ++ __m128i zer0 = vdupq_n_s32(0); ++ __m128i ltMask = vreinterpretq_s32_u32(vcltq_s32(b, zer0)); ++ __m128i gtMask = vreinterpretq_s32_u32(vcgtq_s32(b, zer0)); ++ __m128i neg = vnegq_s32(a); ++ __m128i tmp = vandq_s32(a, gtMask); ++ return vorrq_s32(tmp, vandq_s32(neg, ltMask)); ++} ++ ++FORCE_INLINE __m128i _mm_sign_epi16(__m128i a, __m128i b) ++{ ++ int16x8_t zer0 = vdupq_n_s16(0); ++ int16x8_t ltMask = ++ vreinterpretq_s16_u16(vcltq_s16(vreinterpretq_s16_s32(b), zer0)); ++ int16x8_t gtMask = ++ vreinterpretq_s16_u16(vcgtq_s16(vreinterpretq_s16_s32(b), zer0)); ++ int16x8_t neg = vnegq_s16(vreinterpretq_s16_s32(a)); ++ int16x8_t tmp = vandq_s16(vreinterpretq_s16_s32(a), gtMask); ++ return vreinterpretq_s32_s16(vorrq_s16(tmp, vandq_s16(neg, ltMask))); ++} ++ ++// Adds the four single-precision, floating-point values of a and b. ++// ++// r0 := a0 + b0 ++// r1 := a1 + b1 ++// r2 := a2 + b2 ++// r3 := a3 + b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// adds the scalar single-precision floating point values of a and b. ++// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) ++{ ++ float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); ++ float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); ++ // the upper values in the result must be the remnants of <a>. ++ return vreinterpretq_m128_f32(vaddq_f32(a, value)); ++} ++ ++// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or ++// unsigned 32-bit integers in b. ++// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) ++{ ++ return vreinterpretq_s32_s64( ++ vaddq_s64(vreinterpretq_s64_s32(a), vreinterpretq_s64_s32(b))); ++} ++ ++// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or ++// unsigned 32-bit integers in b. ++// ++// r0 := a0 + b0 ++// r1 := a1 + b1 ++// r2 := a2 + b2 ++// r3 := a3 + b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or ++// unsigned 16-bit integers in b. ++// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or ++// unsigned 8-bit integers in b. ++// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90) ++FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b ++// and saturates. ++// ++// r0 := SignedSaturate(a0 + b0) ++// r1 := SignedSaturate(a1 + b1) ++// ... ++// r7 := SignedSaturate(a7 + b7) ++// ++// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in ++// b and saturates.. ++// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or ++// unsigned 16-bit integers from b. ++// ++// r0 := (a0 * b0)[15:0] ++// r1 := (a1 * b1)[15:0] ++// ... ++// r7 := (a7 * b7)[15:0] ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or ++// unsigned 32-bit integers from b. ++// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Multiplies the four single-precision, floating-point values of a and b. ++// ++// r0 := a0 * b0 ++// r1 := a1 * b1 ++// r2 := a2 * b2 ++// r3 := a3 * b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Multiply the low unsigned 32-bit integers from each packed 64-bit element in ++// a and b, and store the unsigned 64-bit results in dst. ++// ++// r0 := (uint32_t*)a0 * (uint32_t*)b0 ++// r1 := (uint32_t*)a2 * (uint32_t*)b2 ++#if 1 /* C version */ ++FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) ++{ ++ __m128i d; ++ vreinterpretq_nth_u64_m128i(d, 0) = ++ (uint64_t)(vreinterpretq_nth_u32_m128i(a, 0)) * ++ (uint64_t)(vreinterpretq_nth_u32_m128i(b, 0)); ++ vreinterpretq_nth_u64_m128i(d, 1) = ++ (uint64_t)(vreinterpretq_nth_u32_m128i(a, 2)) * ++ (uint64_t)(vreinterpretq_nth_u32_m128i(b, 2)); ++ return d; ++} ++#else /* Neon version */ ++// Default to c version until casting can be sorted out on neon version. ++// (Otherwise requires compiling with -fpermissive) Also unclear whether neon ++// version actually performs better. ++FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) ++{ ++ // shuffle: 0, 1, 2, 3 -> 0, 2, 1, 3 */ ++ __m128i const a_shuf = ++ *(__m128i *) (&vzip_u32(vget_low_u32(vreinterpretq_u32_m128i(a)), ++ vget_high_u32(vreinterpretq_u32_m128i(a)))); ++ __m128i const b_shuf = ++ *(__m128i *) (&vzip_u32(vget_low_u32(vreinterpretq_u32_m128i(b)), ++ vget_high_u32(vreinterpretq_u32_m128i(b)))); ++ // Multiply low word (32 bit) against low word (32 bit) and high word (32 ++ // bit) against high word (32 bit). Pack both results (64 bit) into 128 bit ++ // register and return result. ++ return vreinterpretq_m128i_u64( ++ vmull_u32(vget_low_u32(vreinterpretq_u32_m128i(a_shuf)), ++ vget_low_u32(vreinterpretq_u32_m128i(b_shuf)))); ++} ++#endif ++ ++// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit ++// integers from b. ++// ++// r0 := (a0 * b0) + (a1 * b1) ++// r1 := (a2 * b2) + (a3 * b3) ++// r2 := (a4 * b4) + (a5 * b5) ++// r3 := (a6 * b6) + (a7 * b7) ++// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) ++{ ++ int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), ++ vget_low_s16(vreinterpretq_s16_m128i(b))); ++ int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), ++ vget_high_s16(vreinterpretq_s16_m128i(b))); ++ ++ int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); ++ int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); ++ ++ return vreinterpretq_s32_m128i(vcombine_s32(low_sum, high_sum)); ++} ++ ++// Computes the absolute difference of the 16 unsigned 8-bit integers from a ++// and the 16 unsigned 8-bit integers from b. ++// ++// Return Value ++// Sums the upper 8 differences and lower 8 differences and packs the ++// resulting 2 unsigned 16-bit integers into the upper and lower 64-bit ++// elements. ++// ++// r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7) ++// r1 := 0x0 ++// r2 := 0x0 ++// r3 := 0x0 ++// r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15) ++// r5 := 0x0 ++// r6 := 0x0 ++// r7 := 0x0 ++FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) ++{ ++ uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); ++ uint16_t r0 = t[0] + t[1] + t[2] + t[3]; ++ uint16_t r4 = t[4] + t[5] + t[6] + t[7]; ++ uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0); ++ return (__m128i) vsetq_lane_u16(r4, r, 4); ++} ++ ++// Divides the four single-precision, floating-point values of a and b. ++// ++// r0 := a0 / b0 ++// r1 := a1 / b1 ++// r2 := a2 / b2 ++// r3 := a3 / b3 ++// ++// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) ++{ ++ float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b)); ++ float32x4_t recip1 = ++ vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b))); ++ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1)); ++} ++ ++// Divides the scalar single-precision floating point value of a by b. ++// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) ++{ ++ float32_t value = ++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// This version does additional iterations to improve accuracy. Between 1 and 4 ++// recommended. Computes the approximations of reciprocals of the four ++// single-precision, floating-point values of a. ++// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx ++FORCE_INLINE __m128 recipq_newton(__m128 in, int n) ++{ ++ int i; ++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); ++ for (i = 0; i < n; ++i) { ++ recip = ++ vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); ++ } ++ return vreinterpretq_m128_f32(recip); ++} ++ ++// Computes the approximations of reciprocals of the four single-precision, ++// floating-point values of a. ++// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) ++{ ++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); ++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); ++ return vreinterpretq_m128_f32(recip); ++} ++ ++// Computes the approximations of square roots of the four single-precision, ++// floating-point values of a. First computes reciprocal square roots and then ++// reciprocals of the four values. ++// ++// r0 := sqrt(a0) ++// r1 := sqrt(a1) ++// r2 := sqrt(a2) ++// r3 := sqrt(a3) ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) ++{ ++ float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); ++ float32x4_t sq = vrecpeq_f32(recipsq); ++ // ??? use step versions of both sqrt and recip for better accuracy? ++ return vreinterpretq_m128_f32(sq); ++} ++ ++// Computes the approximation of the square root of the scalar single-precision ++// floating point value of in. ++// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) ++{ ++ float32_t value = ++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); ++} ++ ++// Computes the approximations of the reciprocal square roots of the four ++// single-precision floating point values of in. ++// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) ++{ ++ return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in))); ++} ++ ++// Computes the maximums of the four single-precision, floating-point values of ++// a and b. ++// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Computes the minima of the four single-precision, floating-point values of a ++// and b. ++// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_f32( ++ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Computes the maximum of the two lower scalar single-precision floating point ++// values of a and b. ++// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) ++{ ++ float32_t value = vgetq_lane_f32( ++ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Computes the minimum of the two lower scalar single-precision floating point ++// values of a and b. ++// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) ++{ ++ float32_t value = vgetq_lane_f32( ++ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); ++ return vreinterpretq_m128_f32( ++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); ++} ++ ++// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the ++// 16 unsigned 8-bit integers from b. ++// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the ++// 16 unsigned 8-bit integers from b. ++// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx ++FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); ++} ++ ++// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 ++// signed 16-bit integers from b. ++// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 ++// signed 16-bit integers from b. ++// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// epi versions of min/max ++// Computes the pariwise maximums of the four signed 32-bit integer values of a ++// and b. ++// ++// A 128-bit parameter that can be defined with the following equations: ++// r0 := (a0 > b0) ? a0 : b0 ++// r1 := (a1 > b1) ? a1 : b1 ++// r2 := (a2 > b2) ? a2 : b2 ++// r3 := (a3 > b3) ? a3 : b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Computes the pariwise minima of the four signed 32-bit integer values of a ++// and b. ++// ++// A 128-bit parameter that can be defined with the following equations: ++// r0 := (a0 < b0) ? a0 : b0 ++// r1 := (a1 < b1) ? a1 : b1 ++// r2 := (a2 < b2) ? a2 : b2 ++// r3 := (a3 < b3) ? a3 : b3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s32( ++ vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit ++// integers from b. ++// ++// r0 := (a0 * b0)[31:16] ++// r1 := (a1 * b1)[31:16] ++// ... ++// r7 := (a7 * b7)[31:16] ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) ++{ ++ /* FIXME: issue with large values because of result saturation */ ++ // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), ++ // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return ++ // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); ++ int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); ++ int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ ++ int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); ++ int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ ++ uint16x8x2_t r = ++ vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); ++ return vreinterpretq_m128i_u16(r.val[1]); ++} ++ ++// Computes pairwise add of each argument as single-precision, floating-point ++// values a and b. ++// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx ++FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) ++{ ++#if defined(__aarch64__) ++ return vreinterpretq_m128_f32(vpaddq_f32( ++ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); // AArch64 ++#else ++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_f32( ++ vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); ++#endif ++} ++ ++// ****************************************** ++// Compare operations ++// ****************************************** ++ ++// Compares for less than ++// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compares for greater than. ++// ++// r0 := (a0 > b0) ? 0xffffffff : 0x0 ++// r1 := (a1 > b1) ? 0xffffffff : 0x0 ++// r2 := (a2 > b2) ? 0xffffffff : 0x0 ++// r3 := (a3 > b3) ? 0xffffffff : 0x0 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compares for greater than or equal. ++// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compares for less than or equal. ++// ++// r0 := (a0 <= b0) ? 0xffffffff : 0x0 ++// r1 := (a1 <= b1) ? 0xffffffff : 0x0 ++// r2 := (a2 <= b2) ? 0xffffffff : 0x0 ++// r3 := (a3 <= b3) ? 0xffffffff : 0x0 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compares for equality. ++// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) ++{ ++ return vreinterpretq_m128_u32( ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++} ++ ++// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or ++// unsigned 8-bit integers in b for equality. ++// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or ++// unsigned 16-bit integers in b for equality. ++// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++// Compare packed 32-bit integers in a and b for equality, and store the results ++// in dst ++FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers ++// in b for lesser than. ++// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers ++// in b for greater than. ++// ++// r0 := (a0 > b0) ? 0xff : 0x0 ++// r1 := (a1 > b1) ? 0xff : 0x0 ++// ... ++// r15 := (a15 > b15) ? 0xff : 0x0 ++// ++// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); ++} ++ ++// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers ++// in b for greater than. ++// ++// r0 := (a0 > b0) ? 0xffff : 0x0 ++// r1 := (a1 > b1) ? 0xffff : 0x0 ++// ... ++// r7 := (a7 > b7) ? 0xffff : 0x0 ++// ++// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u16( ++ vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); ++} ++ ++ ++// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers ++// in b for less than. ++// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers ++// in b for greater than. ++// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_u32( ++ vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); ++} ++ ++// Compares the four 32-bit floats in a and b to check if any values are NaN. ++// Ordered compare between each value returns true for "orderable" and false for ++// "not orderable" (NaN). ++// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see ++// also: ++// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean ++// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics ++FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) ++{ ++ // Note: NEON does not have ordered compare builtin ++ // Need to compare a eq a and b eq b to check for NaN ++ // Do AND of results to get final ++ uint32x4_t ceqaa = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t ceqbb = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); ++} ++ ++// Compares the lower single-precision floating point scalar values of a and b ++// using a less than operation. : ++// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important ++// note!! The documentation on MSDN is incorrect! If either of the values is a ++// NAN the docs say you will get a one, but in fact, it will return a zero!! ++FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) ++{ ++ uint32x4_t a_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t b_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); ++ uint32x4_t a_lt_b = ++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0; ++} ++ ++// Compares the lower single-precision floating point scalar values of a and b ++// using a greater than operation. : ++// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx ++FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) ++{ ++ // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a), ++ // vreinterpretq_f32_m128(b)), 0); ++ uint32x4_t a_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t b_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); ++ uint32x4_t a_gt_b = ++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0; ++} ++ ++// Compares the lower single-precision floating point scalar values of a and b ++// using a less than or equal operation. : ++// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx ++FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) ++{ ++ // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a), ++ // vreinterpretq_f32_m128(b)), 0); ++ uint32x4_t a_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t b_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); ++ uint32x4_t a_le_b = ++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0; ++} ++ ++// Compares the lower single-precision floating point scalar values of a and b ++// using a greater than or equal operation. : ++// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx ++FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) ++{ ++ // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a), ++ // vreinterpretq_f32_m128(b)), 0); ++ uint32x4_t a_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t b_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); ++ uint32x4_t a_ge_b = ++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0; ++} ++ ++// Compares the lower single-precision floating point scalar values of a and b ++// using an equality operation. : ++// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx ++FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) ++{ ++ // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), ++ // vreinterpretq_f32_m128(b)), 0); ++ uint32x4_t a_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t b_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); ++ uint32x4_t a_eq_b = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); ++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0; ++} ++ ++// Compares the lower single-precision floating point scalar values of a and b ++// using an inequality operation. : ++// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx ++FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) ++{ ++ // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), ++ // vreinterpretq_f32_m128(b)), 0); ++ uint32x4_t a_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); ++ uint32x4_t b_not_nan = ++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); ++ uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); ++ uint32x4_t a_neq_b = vmvnq_u32( ++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); ++ return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0; ++} ++ ++// according to the documentation, these intrinsics behave the same as the ++// non-'u' versions. We'll just alias them here. ++#define _mm_ucomilt_ss _mm_comilt_ss ++#define _mm_ucomile_ss _mm_comile_ss ++#define _mm_ucomigt_ss _mm_comigt_ss ++#define _mm_ucomige_ss _mm_comige_ss ++#define _mm_ucomieq_ss _mm_comieq_ss ++#define _mm_ucomineq_ss _mm_comineq_ss ++ ++// ****************************************** ++// Conversions ++// ****************************************** ++ ++// Converts the four single-precision, floating-point values of a to signed ++// 32-bit integer values using truncate. ++// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) ++{ ++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); ++} ++ ++// Converts the four signed 32-bit integer values of a to single-precision, ++// floating-point values ++// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx ++FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) ++{ ++ return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); ++} ++ ++// Converts the four unsigned 8-bit integers in the lower 32 bits to four ++// unsigned 32-bit integers. ++// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx ++FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) ++{ ++ uint8x16_t u8x16 = vreinterpretq_u8_s32(a); /* xxxx xxxx xxxx DCBA */ ++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ ++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ ++ return vreinterpretq_s32_u32(u32x4); ++} ++ ++// Converts the four signed 16-bit integers in the lower 64 bits to four signed ++// 32-bit integers. ++// https://msdn.microsoft.com/en-us/library/bb514079%28v=vs.100%29.aspx ++FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) ++{ ++ return vreinterpretq_m128i_s32( ++ vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); ++} ++ ++// Converts the four single-precision, floating-point values of a to signed ++// 32-bit integer values. ++// ++// r0 := (int) a0 ++// r1 := (int) a1 ++// r2 := (int) a2 ++// r3 := (int) a3 ++// ++// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx ++// *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7-A ++// does not support! It is supported on ARMv8-A however. ++FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) ++{ ++#if defined(__aarch64__) ++ return vcvtnq_s32_f32(a); ++#else ++ uint32x4_t signmask = vdupq_n_u32(0x80000000); ++ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), ++ vdupq_n_f32(0.5f)); /* +/- 0.5 */ ++ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( ++ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ ++ int32x4_t r_trunc = ++ vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ ++ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( ++ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ ++ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), ++ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ ++ float32x4_t delta = vsubq_f32( ++ vreinterpretq_f32_m128(a), ++ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ ++ uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */ ++ return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal)); ++#endif ++} ++ ++// Moves the least significant 32 bits of a to a 32-bit integer. ++// https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx ++FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) ++{ ++ return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); ++} ++ ++// Extracts the low order 64-bit integer from the parameter. ++// https://msdn.microsoft.com/en-us/library/bb531384(v=vs.120).aspx ++FORCE_INLINE uint64_t _mm_cvtsi128_si64(__m128i a) ++{ ++ return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); ++} ++ ++// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, ++// zero extending the upper bits. ++// ++// r0 := a ++// r1 := 0x0 ++// r2 := 0x0 ++// r3 := 0x0 ++// ++// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx ++FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) ++{ ++ return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); ++} ++ ++// Applies a type cast to reinterpret four 32-bit floating point values passed ++// in as a 128-bit parameter as packed 32-bit integers. ++// https://msdn.microsoft.com/en-us/library/bb514099.aspx ++FORCE_INLINE __m128i _mm_castps_si128(__m128 a) ++{ ++ return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); ++} ++ ++// Applies a type cast to reinterpret four 32-bit integers passed in as a ++// 128-bit parameter as packed 32-bit floating point values. ++// https://msdn.microsoft.com/en-us/library/bb514029.aspx ++FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) ++{ ++ return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); ++} ++ ++// Loads 128-bit value. : ++// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx ++FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) ++{ ++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); ++} ++ ++// Loads 128-bit value. : ++// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx ++FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) ++{ ++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); ++} ++ ++// ****************************************** ++// Miscellaneous Operations ++// ****************************************** ++ ++// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and ++// saturates. ++// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx ++FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s8( ++ vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), ++ vqmovn_s16(vreinterpretq_s16_m128i(b)))); ++} ++ ++// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned ++// integers and saturates. ++// ++// r0 := UnsignedSaturate(a0) ++// r1 := UnsignedSaturate(a1) ++// ... ++// r7 := UnsignedSaturate(a7) ++// r8 := UnsignedSaturate(b0) ++// r9 := UnsignedSaturate(b1) ++// ... ++// r15 := UnsignedSaturate(b7) ++// ++// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) ++{ ++ return vreinterpretq_m128i_u8( ++ vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), ++ vqmovun_s16(vreinterpretq_s16_m128i(b)))); ++} ++ ++// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers ++// and saturates. ++// ++// r0 := SignedSaturate(a0) ++// r1 := SignedSaturate(a1) ++// r2 := SignedSaturate(a2) ++// r3 := SignedSaturate(a3) ++// r4 := SignedSaturate(b0) ++// r5 := SignedSaturate(b1) ++// r6 := SignedSaturate(b2) ++// r7 := SignedSaturate(b3) ++// ++// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx ++FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) ++{ ++ return vreinterpretq_m128i_s16( ++ vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), ++ vqmovn_s32(vreinterpretq_s32_m128i(b)))); ++} ++ ++// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower ++// 8 signed or unsigned 8-bit integers in b. ++// ++// r0 := a0 ++// r1 := b0 ++// r2 := a1 ++// r3 := b1 ++// ... ++// r14 := a7 ++// r15 := b7 ++// ++// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx ++FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) ++{ ++ int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); ++ int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); ++ int8x8x2_t result = vzip_s8(a1, b1); ++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); ++} ++ ++// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the ++// lower 4 signed or unsigned 16-bit integers in b. ++// ++// r0 := a0 ++// r1 := b0 ++// r2 := a1 ++// r3 := b1 ++// r4 := a2 ++// r5 := b2 ++// r6 := a3 ++// r7 := b3 ++// ++// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx ++FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) ++{ ++ int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); ++ int16x4x2_t result = vzip_s16(a1, b1); ++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); ++} ++ ++// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the ++// lower 2 signed or unsigned 32 - bit integers in b. ++// ++// r0 := a0 ++// r1 := b0 ++// r2 := a1 ++// r3 := b1 ++// ++// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) ++{ ++ int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); ++ int32x2x2_t result = vzip_s32(a1, b1); ++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); ++} ++ ++FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) ++{ ++ int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); ++ int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); ++ return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); ++} ++ ++// Selects and interleaves the lower two single-precision, floating-point values ++// from a and b. ++// ++// r0 := a0 ++// r1 := b0 ++// r2 := a1 ++// r3 := b1 ++// ++// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx ++FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) ++{ ++ float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); ++ float32x2x2_t result = vzip_f32(a1, b1); ++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); ++} ++ ++// Selects and interleaves the upper two single-precision, floating-point values ++// from a and b. ++// ++// r0 := a2 ++// r1 := b2 ++// r2 := a3 ++// r3 := b3 ++// ++// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx ++FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) ++{ ++ float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); ++ float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); ++ float32x2x2_t result = vzip_f32(a1, b1); ++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); ++} ++ ++// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper ++// 8 signed or unsigned 8-bit integers in b. ++// ++// r0 := a8 ++// r1 := b8 ++// r2 := a9 ++// r3 := b9 ++// ... ++// r14 := a15 ++// r15 := b15 ++// ++// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) ++{ ++ int8x8_t a1 = ++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); ++ int8x8_t b1 = ++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); ++ int8x8x2_t result = vzip_s8(a1, b1); ++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); ++} ++ ++// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the ++// upper 4 signed or unsigned 16-bit integers in b. ++// ++// r0 := a4 ++// r1 := b4 ++// r2 := a5 ++// r3 := b5 ++// r4 := a6 ++// r5 := b6 ++// r6 := a7 ++// r7 := b7 ++// ++// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) ++{ ++ int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); ++ int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); ++ int16x4x2_t result = vzip_s16(a1, b1); ++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); ++} ++ ++// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the ++// upper 2 signed or unsigned 32-bit integers in b. ++// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx ++FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) ++{ ++ int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); ++ int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); ++ int32x2x2_t result = vzip_s32(a1, b1); ++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); ++} ++ ++// Interleaves the upper signed or unsigned 64-bit integer in a with the ++// upper signed or unsigned 64-bit integer in b. ++// ++// r0 := a1 ++// r1 := b1 ++FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) ++{ ++ int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); ++ int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); ++ return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); ++} ++ ++// shift to right ++// https://msdn.microsoft.com/en-us/library/bb514041(v=vs.120).aspx ++// http://blog.csdn.net/hemmingway/article/details/44828303 ++FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, const int c) ++{ ++ return (__m128i) vextq_s8((int8x16_t) a, (int8x16_t) b, c); ++} ++ ++// Extracts the selected signed or unsigned 16-bit integer from a and zero ++// extends. https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx ++// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) ++#define _mm_extract_epi16(a, imm) \ ++ ({ (vgetq_lane_s16(vreinterpretq_s16_m128i(a), (imm)) & 0x0000ffffUL); }) ++ ++// Inserts the least significant 16 bits of b into the selected 16-bit integer ++// of a. https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx ++// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, const int b, ++// __constrange(0,8) int imm) ++#define _mm_insert_epi16(a, b, imm) \ ++ ({ \ ++ vreinterpretq_m128i_s16( \ ++ vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ ++ }) ++ ++// ****************************************** ++// Crypto Extensions ++// ****************************************** ++#if !defined(__ARM_FEATURE_CRYPTO) && defined(__aarch64__) ++// In the absence of crypto extensions, implement aesenc using regular neon ++// intrinsics instead. See: ++// http://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ ++// http://www.workofard.com/2017/07/ghash-for-low-end-cores/ and ++// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52 ++// for more information Reproduced with permission of the author. ++FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) ++{ ++ static const uint8_t crypto_aes_sbox[256] = { ++ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, ++ 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, ++ 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, ++ 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, ++ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, ++ 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, ++ 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, ++ 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, ++ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, ++ 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, ++ 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, ++ 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, ++ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, ++ 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, ++ 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, ++ 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, ++ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, ++ 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, ++ 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, ++ 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, ++ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, ++ 0xb0, 0x54, 0xbb, 0x16}; ++ static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9, ++ 0xe, 0x3, 0x8, 0xd, 0x2, 0x7, ++ 0xc, 0x1, 0x6, 0xb}; ++ static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, ++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc}; ++ ++ uint8x16_t v; ++ uint8x16_t w = vreinterpretq_u8_m128i(EncBlock); ++ ++ // shift rows ++ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); ++ ++ // sub bytes ++ v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w); ++ v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40); ++ v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80); ++ v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0); ++ ++ // mix columns ++ w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b); ++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); ++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); ++ ++ // add round key ++ return vreinterpretq_m128i_u8(w) ^ RoundKey; ++} ++#elif defined(__ARM_FEATURE_CRYPTO) ++// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and ++// AESMC and then manually applying the real key as an xor operation This ++// unfortunately means an additional xor op; the compiler should be able to ++// optimise this away for repeated calls however See ++// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a ++// for more details. ++inline __m128i _mm_aesenc_si128(__m128i a, __m128i b) ++{ ++ return vreinterpretq_s32_u8( ++ vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_s32(a), uint8x16_t{})) ^ ++ vreinterpretq_u8_s32(b)); ++} ++#endif ++ ++// ****************************************** ++// Streaming Extensions ++// ****************************************** ++ ++// Guarantees that every preceding store is globally visible before any ++// subsequent store. ++// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx ++FORCE_INLINE void _mm_sfence(void) ++{ ++ __sync_synchronize(); ++} ++ ++// Stores the data in a to the address p without polluting the caches. If the ++// cache line containing address p is already in the cache, the cache will be ++// updated.Address p must be 16 - byte aligned. ++// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx ++FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) ++{ ++ vst1q_s32((int32_t *) p, a); ++} ++ ++// Cache line containing p is flushed and invalidated from all caches in the ++// coherency domain. : ++// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx ++FORCE_INLINE void _mm_clflush(void const *p) ++{ ++ // no corollary for Neon? ++} ++ ++#if defined(__GNUC__) || defined(__clang__) ++#pragma pop_macro("ALIGN_STRUCT") ++#pragma pop_macro("FORCE_INLINE") ++#endif ++ ++#endif +diff --git a/vendor/spoa/src/simd_alignment_engine.cpp b/vendor/spoa/src/simd_alignment_engine.cpp +index 3e5815a..2fd10d7 100644 +--- a/vendor/spoa/src/simd_alignment_engine.cpp ++++ b/vendor/spoa/src/simd_alignment_engine.cpp +@@ -7,9 +7,12 @@ + #include <algorithm> + #include <limits> + ++#include "arch/aarch64/sse2neon.h" ++/* + extern "C" { + #include <immintrin.h> // AVX2 and lower + } ++*/ + + #include "spoa/graph.hpp" + #include "simd_alignment_engine.hpp" diff --git a/var/spack/repos/builtin/packages/racon/package.py b/var/spack/repos/builtin/packages/racon/package.py index 35f5eabf31..1e661b4bd7 100644 --- a/var/spack/repos/builtin/packages/racon/package.py +++ b/var/spack/repos/builtin/packages/racon/package.py @@ -29,10 +29,8 @@ class Racon(CMakePackage): conflicts('%gcc@:4.7') conflicts('%clang@:3.1') + patch('aarch64.patch', when='target=aarch64:') + def cmake_args(self): args = ['-Dracon_build_wrapper=ON'] return args - - def install(self, spec, prefix): - install_tree('spack-build/bin', prefix.bin) - install_tree('spack-build/lib', prefix.lib) |