summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--var/spack/repos/builtin/packages/racon/aarch64.patch2806
-rw-r--r--var/spack/repos/builtin/packages/racon/package.py6
2 files changed, 2808 insertions, 4 deletions
diff --git a/var/spack/repos/builtin/packages/racon/aarch64.patch b/var/spack/repos/builtin/packages/racon/aarch64.patch
new file mode 100644
index 0000000000..332be1179d
--- /dev/null
+++ b/var/spack/repos/builtin/packages/racon/aarch64.patch
@@ -0,0 +1,2806 @@
+diff --git a/vendor/spoa/include/arch/aarch64/sse2neon.h b/vendor/spoa/include/arch/aarch64/sse2neon.h
+new file mode 100644
+index 0000000..1477ae1
+--- /dev/null
++++ b/vendor/spoa/include/arch/aarch64/sse2neon.h
+@@ -0,0 +1,2783 @@
++#ifndef SSE2NEON_H
++#define SSE2NEON_H
++
++// This header file provides a simple API translation layer
++// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
++//
++// This header file does not yet translate all of the SSE intrinsics.
++//
++// Contributors to this work are:
++// John W. Ratcliff <jratcliffscarab@gmail.com>
++// Brandon Rowlett <browlett@nvidia.com>
++// Ken Fast <kfast@gdeb.com>
++// Eric van Beurden <evanbeurden@nvidia.com>
++// Alexander Potylitsin <apotylitsin@nvidia.com>
++// Hasindu Gamaarachchi <hasindu2008@gmail.com>
++// Jim Huang <jserv@biilabs.io>
++// Mark Cheng <marktwtn@biilabs.io>
++// Malcolm James MacLeod <malcolm@gulden.com>
++
++/*
++ * The MIT license:
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a copy
++ * of this software and associated documentation files (the "Software"), to deal
++ * in the Software without restriction, including without limitation the rights
++ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
++ * copies of the Software, and to permit persons to whom the Software is
++ * furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
++ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
++ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
++ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
++ * SOFTWARE.
++ */
++
++#if defined(__GNUC__) || defined(__clang__)
++
++#pragma push_macro("FORCE_INLINE")
++#pragma push_macro("ALIGN_STRUCT")
++#define FORCE_INLINE static inline __attribute__((always_inline))
++#define ALIGN_STRUCT(x) __attribute__((aligned(x)))
++
++#else
++
++#error "Macro name collisions may happens with unknown compiler"
++#ifdef FORCE_INLINE
++#undef FORCE_INLINE
++#endif
++#define FORCE_INLINE static inline
++#ifndef ALIGN_STRUCT
++#define ALIGN_STRUCT(x) __declspec(align(x))
++#endif
++
++#endif
++
++#include <stdint.h>
++
++#include "arm_neon.h"
++
++/**
++ * MACRO for shuffle parameter for _mm_shuffle_ps().
++ * Argument fp3 is a digit[0123] that represents the fp from argument "b"
++ * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
++ * for fp2 in result. fp1 is a digit[0123] that represents the fp from
++ * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
++ * fp0 is the same for fp0 of result.
++ */
++#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
++ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
++
++/* indicate immediate constant argument in a given range */
++#define __constrange(a, b) const
++
++typedef float32x2_t __m64;
++typedef float32x4_t __m128;
++typedef int32x4_t __m128i;
++
++// ******************************************
++// type-safe casting between types
++// ******************************************
++
++#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
++#define vreinterpretq_m128_f32(x) (x)
++#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
++
++#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
++#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
++#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
++#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
++
++#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
++#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
++#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
++#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
++
++#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
++#define vreinterpretq_f32_m128(x) (x)
++#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
++
++#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
++#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
++#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
++#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
++
++#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
++#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
++#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
++#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
++
++#define vreinterpretq_m128i_s8(x) vreinterpretq_s32_s8(x)
++#define vreinterpretq_m128i_s16(x) vreinterpretq_s32_s16(x)
++#define vreinterpretq_m128i_s32(x) (x)
++#define vreinterpretq_m128i_s64(x) vreinterpretq_s32_s64(x)
++
++#define vreinterpretq_m128i_u8(x) vreinterpretq_s32_u8(x)
++#define vreinterpretq_m128i_u16(x) vreinterpretq_s32_u16(x)
++#define vreinterpretq_m128i_u32(x) vreinterpretq_s32_u32(x)
++#define vreinterpretq_m128i_u64(x) vreinterpretq_s32_u64(x)
++
++#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s32(x)
++#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s32(x)
++#define vreinterpretq_s32_m128i(x) (x)
++#define vreinterpretq_s64_m128i(x) vreinterpretq_s64_s32(x)
++
++#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s32(x)
++#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s32(x)
++#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s32(x)
++#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s32(x)
++
++// A struct is defined in this header file called 'SIMDVec' which can be used
++// by applications which attempt to access the contents of an _m128 struct
++// directly. It is important to note that accessing the __m128 struct directly
++// is bad coding practice by Microsoft: @see:
++// https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx
++//
++// However, some legacy source code may try to access the contents of an __m128
++// struct directly so the developer can use the SIMDVec as an alias for it. Any
++// casting must be done manually by the developer, as you cannot cast or
++// otherwise alias the base NEON data type for intrinsic operations.
++//
++// union intended to allow direct access to an __m128 variable using the names
++// that the MSVC compiler provides. This union should really only be used when
++// trying to access the members of the vector as integer values. GCC/clang
++// allow native access to the float members through a simple array access
++// operator (in C since 4.6, in C++ since 4.8).
++//
++// Ideally direct accesses to SIMD vectors should not be used since it can cause
++// a performance hit. If it really is needed however, the original __m128
++// variable can be aliased with a pointer to this union and used to access
++// individual components. The use of this union should be hidden behind a macro
++// that is used throughout the codebase to access the members instead of always
++// declaring this type of variable.
++typedef union ALIGN_STRUCT(16) SIMDVec {
++ float
++ m128_f32[4]; // as floats - do not to use this. Added for convenience.
++ int8_t m128_i8[16]; // as signed 8-bit integers.
++ int16_t m128_i16[8]; // as signed 16-bit integers.
++ int32_t m128_i32[4]; // as signed 32-bit integers.
++ int64_t m128_i64[2]; // as signed 64-bit integers.
++ uint8_t m128_u8[16]; // as unsigned 8-bit integers.
++ uint16_t m128_u16[8]; // as unsigned 16-bit integers.
++ uint32_t m128_u32[4]; // as unsigned 32-bit integers.
++ uint64_t m128_u64[2]; // as unsigned 64-bit integers.
++} SIMDVec;
++
++// casting using SIMDVec
++#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
++#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
++
++
++// ******************************************
++// Backwards compatibility for compilers with lack of specific type support
++// ******************************************
++
++// Older gcc does not define vld1q_u8_x4 type
++#if defined(__GNUC__) && !defined(__clang__)
++#if __GNUC__ < 9 || (__GNUC__ == 9 && (__GNUC_MINOR__ <= 2))
++FORCE_INLINE uint8x16x4_t vld1q_u8_x4(const uint8_t *p)
++{
++ uint8x16x4_t ret;
++ ret.val[0] = vld1q_u8(p + 0);
++ ret.val[1] = vld1q_u8(p + 16);
++ ret.val[2] = vld1q_u8(p + 32);
++ ret.val[3] = vld1q_u8(p + 48);
++ return ret;
++}
++#endif
++#endif
++
++
++// ******************************************
++// Set/get methods
++// ******************************************
++
++// Loads one cache line of data from address p to a location closer to the
++// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx
++FORCE_INLINE void _mm_prefetch(const void *p, int i)
++{
++ __builtin_prefetch(p);
++}
++
++// extracts the lower order floating point value from the parameter :
++// https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396
++FORCE_INLINE float _mm_cvtss_f32(__m128 a)
++{
++ return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++}
++
++// Sets the 128-bit value to zero
++// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_setzero_si128(void)
++{
++ return vreinterpretq_m128i_s32(vdupq_n_s32(0));
++}
++
++// Clears the four single-precision, floating-point values.
++// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_setzero_ps(void)
++{
++ return vreinterpretq_m128_f32(vdupq_n_f32(0));
++}
++
++// Sets the four single-precision, floating-point values to w.
++//
++// r0 := r1 := r2 := r3 := w
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_set1_ps(float _w)
++{
++ return vreinterpretq_m128_f32(vdupq_n_f32(_w));
++}
++
++// Sets the four single-precision, floating-point values to w.
++// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_set_ps1(float _w)
++{
++ return vreinterpretq_m128_f32(vdupq_n_f32(_w));
++}
++
++// Sets the four single-precision, floating-point values to the four inputs.
++// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
++{
++ float __attribute__((aligned(16))) data[4] = {x, y, z, w};
++ return vreinterpretq_m128_f32(vld1q_f32(data));
++}
++
++// Sets the four single-precision, floating-point values to the four inputs in
++// reverse order.
++// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
++{
++ float __attribute__((aligned(16))) data[4] = {w, z, y, x};
++ return vreinterpretq_m128_f32(vld1q_f32(data));
++}
++
++// Sets the 8 signed 16-bit integer values in reverse order.
++//
++// Return Value
++// r0 := w0
++// r1 := w1
++// ...
++// r7 := w7
++FORCE_INLINE __m128i _mm_setr_epi16(short w0,
++ short w1,
++ short w2,
++ short w3,
++ short w4,
++ short w5,
++ short w6,
++ short w7)
++{
++ int16_t __attribute__((aligned(16)))
++ data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
++ return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
++}
++
++// Sets the 4 signed 32-bit integer values in reverse order
++// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
++{
++ int32_t __attribute__((aligned(16))) data[4] = {i3, i2, i1, i0};
++ return vreinterpretq_m128i_s32(vld1q_s32(data));
++}
++
++// Sets the 16 signed 8-bit integer values to b.
++//
++// r0 := b
++// r1 := b
++// ...
++// r15 := b
++//
++// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_set1_epi8(char w)
++{
++ return vreinterpretq_m128i_s8(vdupq_n_s8(w));
++}
++
++// Sets the 8 signed 16-bit integer values to w.
++//
++// r0 := w
++// r1 := w
++// ...
++// r7 := w
++//
++// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_set1_epi16(short w)
++{
++ return vreinterpretq_m128i_s16(vdupq_n_s16(w));
++}
++
++// Sets the 16 signed 8-bit integer values.
++// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_set_epi8(char b15,
++ char b14,
++ char b13,
++ char b12,
++ char b11,
++ char b10,
++ char b9,
++ char b8,
++ char b7,
++ char b6,
++ char b5,
++ char b4,
++ char b3,
++ char b2,
++ char b1,
++ char b0)
++{
++ int8_t __attribute__((aligned(16)))
++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
++ return (__m128i) vld1q_s8(data);
++}
++
++// Sets the 8 signed 16-bit integer values.
++// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_set_epi16(short i7,
++ short i6,
++ short i5,
++ short i4,
++ short i3,
++ short i2,
++ short i1,
++ short i0)
++{
++ int16_t __attribute__((aligned(16)))
++ data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
++ return vreinterpretq_m128i_s16(vld1q_s16(data));
++}
++
++// Sets the 16 signed 8-bit integer values in reverse order.
++// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_setr_epi8(char b0,
++ char b1,
++ char b2,
++ char b3,
++ char b4,
++ char b5,
++ char b6,
++ char b7,
++ char b8,
++ char b9,
++ char b10,
++ char b11,
++ char b12,
++ char b13,
++ char b14,
++ char b15)
++{
++ int8_t __attribute__((aligned(16)))
++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
++ return (__m128i) vld1q_s8(data);
++}
++
++// Sets the 4 signed 32-bit integer values to i.
++//
++// r0 := i
++// r1 := i
++// r2 := i
++// r3 := I
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_set1_epi32(int _i)
++{
++ return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
++}
++
++// Sets the 4 signed 64-bit integer values to i.
++// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_set1_epi64(int64_t _i)
++{
++ return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
++}
++
++// Sets the 4 signed 32-bit integer values.
++// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
++{
++ int32_t __attribute__((aligned(16))) data[4] = {i0, i1, i2, i3};
++ return vreinterpretq_m128i_s32(vld1q_s32(data));
++}
++
++// Returns the __m128i structure with its two 64-bit integer values
++// initialized to the values of the two 64-bit integers passed in.
++// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx
++FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
++{
++ int64_t __attribute__((aligned(16))) data[2] = {i2, i1};
++ return vreinterpretq_m128i_s64(vld1q_s64(data));
++}
++
++// Stores four single-precision, floating-point values.
++// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx
++FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
++{
++ vst1q_f32(p, vreinterpretq_f32_m128(a));
++}
++
++// Stores four single-precision, floating-point values.
++// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx
++FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
++{
++ vst1q_f32(p, vreinterpretq_f32_m128(a));
++}
++
++// Stores four 32-bit integer values as (as a __m128i value) at the address p.
++// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
++FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
++{
++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
++}
++
++// Stores four 32-bit integer values as (as a __m128i value) at the address p.
++// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx
++FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
++{
++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
++}
++
++// Stores the lower single - precision, floating - point value.
++// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx
++FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
++{
++ vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
++}
++
++// Reads the lower 64 bits of b and stores them into the lower 64 bits of a.
++// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx
++FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
++{
++ uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a));
++ uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b));
++ *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi));
++}
++
++// Stores the lower two single-precision floating point values of a to the
++// address p.
++//
++// *p0 := b0
++// *p1 := b1
++//
++// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx
++FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
++{
++ *p = vget_low_f32(a);
++}
++
++// Loads a single single-precision, floating-point value, copying it into all
++// four words
++// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_load1_ps(const float *p)
++{
++ return vreinterpretq_m128_f32(vld1q_dup_f32(p));
++}
++#define _mm_load_ps1 _mm_load1_ps
++
++// Sets the lower two single-precision, floating-point values with 64
++// bits of data loaded from the address p; the upper two values are passed
++// through from a.
++//
++// Return Value
++// r0 := *p0
++// r1 := *p1
++// r2 := a2
++// r3 := a3
++//
++// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *b)
++{
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vld1_f32((const float32_t *) b), vget_high_f32(a)));
++}
++
++// Loads four single-precision, floating-point values.
++// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_load_ps(const float *p)
++{
++ return vreinterpretq_m128_f32(vld1q_f32(p));
++}
++
++// Loads four single-precision, floating-point values.
++// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx
++FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
++{
++ // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
++ // equivalent for neon
++ return vreinterpretq_m128_f32(vld1q_f32(p));
++}
++
++// Loads an single - precision, floating - point value into the low word and
++// clears the upper three words.
++// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx
++FORCE_INLINE __m128 _mm_load_ss(const float *p)
++{
++ return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
++}
++
++FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
++{
++ /* Load the lower 64 bits of the value pointed to by p into the
++ * lower 64 bits of the result, zeroing the upper 64 bits of the result.
++ */
++ return vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0));
++}
++
++// ******************************************
++// Logic/Binary operations
++// ******************************************
++
++// Compares for inequality.
++// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(vmvnq_u32(
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
++}
++
++// Computes the bitwise AND-NOT of the four single-precision, floating-point
++// values of a and b.
++//
++// r0 := ~a0 & b0
++// r1 := ~a1 & b1
++// r2 := ~a2 & b2
++// r3 := ~a3 & b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ vbicq_s32(vreinterpretq_s32_m128(b),
++ vreinterpretq_s32_m128(a))); // *NOTE* argument swap
++}
++
++// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the
++// 128-bit value in a.
++//
++// r := (~a) & b
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vbicq_s32(vreinterpretq_s32_m128i(b),
++ vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
++}
++
++// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in
++// b.
++//
++// r := a & b
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Computes the bitwise AND of the four single-precision, floating-point values
++// of a and b.
++//
++// r0 := a0 & b0
++// r1 := a1 & b1
++// r2 := a2 & b2
++// r3 := a3 & b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
++}
++
++// Computes the bitwise OR of the four single-precision, floating-point values
++// of a and b.
++// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
++}
++
++// Computes bitwise EXOR (exclusive-or) of the four single-precision,
++// floating-point values of a and b.
++// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
++}
++
++// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.
++//
++// r := a | b
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in
++// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Moves the upper two values of B into the lower two values of A.
++//
++// r3 := a3
++// r2 := a2
++// r1 := b3
++// r0 := b2
++FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B)
++{
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A));
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B));
++ return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
++}
++
++// Moves the lower two values of B into the upper two values of A.
++//
++// r3 := b1
++// r2 := b0
++// r1 := a1
++// r0 := a0
++FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
++}
++
++// NEON does not provide this method
++// Creates a 4-bit mask from the most significant bits of the four
++// single-precision, floating-point values.
++// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx
++FORCE_INLINE int _mm_movemask_ps(__m128 a)
++{
++#if 0 /* C version */
++ uint32x4_t &ia = *(uint32x4_t *) &a;
++ return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) |
++ ((ia[3] >> 28) & 8);
++#endif
++ static const uint32x4_t movemask = {1, 2, 4, 8};
++ static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000,
++ 0x80000000};
++ uint32x4_t t0 = vreinterpretq_u32_m128(a);
++ uint32x4_t t1 = vtstq_u32(t0, highbit);
++ uint32x4_t t2 = vandq_u32(t1, movemask);
++ uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2));
++ return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1);
++}
++
++FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
++{
++ return vqabsq_s32(a);
++}
++
++FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
++{
++ return vreinterpretq_s32_s16(vqabsq_s16(vreinterpretq_s16_s32(a)));
++}
++
++// Takes the upper 64 bits of a and places it in the low end of the result
++// Takes the lower 64 bits of b and places it into the high end of the result.
++FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
++{
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
++}
++
++// takes the lower two 32-bit values from a and swaps them and places in high
++// end of result takes the higher two 32 bit values from b and swaps them and
++// places in low end of result.
++FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
++{
++ float32x2_t a21 = vget_high_f32(
++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
++ float32x2_t b03 = vget_low_f32(
++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
++ return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
++{
++ float32x2_t a03 = vget_low_f32(
++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
++ float32x2_t b21 = vget_high_f32(
++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
++ return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
++}
++
++// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
++// high
++FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
++{
++ float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
++{
++ float32x2_t a22 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
++{
++ float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
++ float32x2_t b22 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
++{
++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++ float32x2_t a22 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
++ float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
++{
++ float32x2_t a33 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
++ float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32_t b2 = vgetq_lane_f32(b, 2);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
++{
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32_t b2 = vgetq_lane_f32(b, 2);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
++}
++
++// NEON does not support a general purpose permute intrinsic
++// Selects four specific single-precision, floating-point values from a and b,
++// based on the mask i.
++// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx
++#if 0 /* C version */
++FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a,
++ __m128 b,
++ __constrange(0, 255) int imm)
++{
++ __m128 ret;
++ ret[0] = a[imm & 0x3];
++ ret[1] = a[(imm >> 2) & 0x3];
++ ret[2] = b[(imm >> 4) & 0x03];
++ ret[3] = b[(imm >> 6) & 0x03];
++ return ret;
++}
++#endif
++#define _mm_shuffle_ps_default(a, b, imm) \
++ ({ \
++ float32x4_t ret; \
++ ret = vmovq_n_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) &0x3)); \
++ ret = vsetq_lane_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
++ ret, 1); \
++ ret = vsetq_lane_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
++ ret, 2); \
++ ret = vsetq_lane_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
++ ret, 3); \
++ vreinterpretq_m128_f32(ret); \
++ })
++
++// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
++// int imm)
++#define _mm_shuffle_ps(a, b, imm) \
++ ({ \
++ __m128 ret; \
++ switch (imm) { \
++ case _MM_SHUFFLE(1, 0, 3, 2): \
++ ret = _mm_shuffle_ps_1032((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(2, 3, 0, 1): \
++ ret = _mm_shuffle_ps_2301((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(0, 3, 2, 1): \
++ ret = _mm_shuffle_ps_0321((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(2, 1, 0, 3): \
++ ret = _mm_shuffle_ps_2103((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 1, 0): \
++ ret = _mm_movelh_ps((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 0, 1): \
++ ret = _mm_shuffle_ps_1001((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(0, 1, 0, 1): \
++ ret = _mm_shuffle_ps_0101((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(3, 2, 1, 0): \
++ ret = _mm_shuffle_ps_3210((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(0, 0, 1, 1): \
++ ret = _mm_shuffle_ps_0011((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(0, 0, 2, 2): \
++ ret = _mm_shuffle_ps_0022((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(2, 2, 0, 0): \
++ ret = _mm_shuffle_ps_2200((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(3, 2, 0, 2): \
++ ret = _mm_shuffle_ps_3202((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(3, 2, 3, 2): \
++ ret = _mm_movehl_ps((b), (a)); \
++ break; \
++ case _MM_SHUFFLE(1, 1, 3, 3): \
++ ret = _mm_shuffle_ps_1133((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(2, 0, 1, 0): \
++ ret = _mm_shuffle_ps_2010((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(2, 0, 0, 1): \
++ ret = _mm_shuffle_ps_2001((a), (b)); \
++ break; \
++ case _MM_SHUFFLE(2, 0, 3, 2): \
++ ret = _mm_shuffle_ps_2032((a), (b)); \
++ break; \
++ default: \
++ ret = _mm_shuffle_ps_default((a), (b), (imm)); \
++ break; \
++ } \
++ ret; \
++ })
++
++// Takes the upper 64 bits of a and places it in the low end of the result
++// Takes the lower 64 bits of a and places it into the high end of the result.
++FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
++{
++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
++}
++
++// takes the lower two 32-bit values from a and swaps them and places in low end
++// of result takes the higher two 32 bit values from a and swaps them and places
++// in high end of result.
++FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
++{
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
++}
++
++// rotates the least significant 32 bits into the most signficant 32 bits, and
++// shifts the rest down
++FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
++{
++ return vreinterpretq_m128i_s32(
++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
++}
++
++// rotates the most significant 32 bits into the least signficant 32 bits, and
++// shifts the rest up
++FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
++{
++ return vreinterpretq_m128i_s32(
++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
++}
++
++// gets the lower 64 bits of a, and places it in the upper 64 bits
++// gets the lower 64 bits of a and places it in the lower 64 bits
++FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
++{
++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
++}
++
++// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
++// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
++FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
++{
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
++}
++
++// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
++// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
++// places it in the lower 64 bits
++FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
++{
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
++}
++
++FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
++{
++ int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
++ return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
++}
++
++FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
++{
++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
++}
++
++FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
++{
++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
++}
++
++// Shuffle packed 8-bit integers in a according to shuffle control mask in the
++// corresponding 8-bit element of b, and store the results in dst.
++// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8&expand=5146
++FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
++{
++#if __aarch64__
++ int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
++ uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
++ uint8_t __attribute__((aligned(16)))
++ mask[16] = {0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F,
++ 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F, 0x8F};
++ uint8x16_t idx_masked =
++ vandq_u8(idx, vld1q_u8(mask)); // avoid using meaningless bits
++
++ return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
++#else
++ uint8_t *tbl = (uint8_t *) &a; // input a
++ uint8_t *idx = (uint8_t *) &b; // input b
++ int32_t r[4];
++
++ r[0] = ((idx[3] & 0x80) ? 0 : tbl[idx[3] % 16]) << 24;
++ r[0] |= ((idx[2] & 0x80) ? 0 : tbl[idx[2] % 16]) << 16;
++ r[0] |= ((idx[1] & 0x80) ? 0 : tbl[idx[1] % 16]) << 8;
++ r[0] |= ((idx[0] & 0x80) ? 0 : tbl[idx[0] % 16]);
++
++ r[1] = ((idx[7] & 0x80) ? 0 : tbl[idx[7] % 16]) << 24;
++ r[1] |= ((idx[6] & 0x80) ? 0 : tbl[idx[6] % 16]) << 16;
++ r[1] |= ((idx[5] & 0x80) ? 0 : tbl[idx[5] % 16]) << 8;
++ r[1] |= ((idx[4] & 0x80) ? 0 : tbl[idx[4] % 16]);
++
++ r[2] = ((idx[11] & 0x80) ? 0 : tbl[idx[11] % 16]) << 24;
++ r[2] |= ((idx[10] & 0x80) ? 0 : tbl[idx[10] % 16]) << 16;
++ r[2] |= ((idx[9] & 0x80) ? 0 : tbl[idx[9] % 16]) << 8;
++ r[2] |= ((idx[8] & 0x80) ? 0 : tbl[idx[8] % 16]);
++
++ r[3] = ((idx[15] & 0x80) ? 0 : tbl[idx[15] % 16]) << 24;
++ r[3] |= ((idx[14] & 0x80) ? 0 : tbl[idx[14] % 16]) << 16;
++ r[3] |= ((idx[13] & 0x80) ? 0 : tbl[idx[13] % 16]) << 8;
++ r[3] |= ((idx[12] & 0x80) ? 0 : tbl[idx[12] % 16]);
++
++ return vld1q_s32(r);
++#endif
++}
++
++
++#if 0 /* C version */
++FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a,
++ __constrange(0, 255) int imm)
++{
++ __m128i ret;
++ ret[0] = a[imm & 0x3];
++ ret[1] = a[(imm >> 2) & 0x3];
++ ret[2] = a[(imm >> 4) & 0x03];
++ ret[3] = a[(imm >> 6) & 0x03];
++ return ret;
++}
++#endif
++#define _mm_shuffle_epi32_default(a, imm) \
++ ({ \
++ int32x4_t ret; \
++ ret = vmovq_n_s32( \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) &0x3)); \
++ ret = vsetq_lane_s32( \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \
++ ret, 1); \
++ ret = vsetq_lane_s32( \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
++ ret, 2); \
++ ret = vsetq_lane_s32( \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
++ ret, 3); \
++ vreinterpretq_m128i_s32(ret); \
++ })
++
++// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255)
++// int imm)
++#if defined(__aarch64__)
++#define _mm_shuffle_epi32_splat(a, imm) \
++ ({ \
++ vreinterpretq_m128i_s32( \
++ vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \
++ })
++#else
++#define _mm_shuffle_epi32_splat(a, imm) \
++ ({ \
++ vreinterpretq_m128i_s32( \
++ vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \
++ })
++#endif
++
++// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm.
++// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx
++// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, __constrange(0,255) int
++// imm)
++#define _mm_shuffle_epi32(a, imm) \
++ ({ \
++ __m128i ret; \
++ switch (imm) { \
++ case _MM_SHUFFLE(1, 0, 3, 2): \
++ ret = _mm_shuffle_epi_1032((a)); \
++ break; \
++ case _MM_SHUFFLE(2, 3, 0, 1): \
++ ret = _mm_shuffle_epi_2301((a)); \
++ break; \
++ case _MM_SHUFFLE(0, 3, 2, 1): \
++ ret = _mm_shuffle_epi_0321((a)); \
++ break; \
++ case _MM_SHUFFLE(2, 1, 0, 3): \
++ ret = _mm_shuffle_epi_2103((a)); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 1, 0): \
++ ret = _mm_shuffle_epi_1010((a)); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 0, 1): \
++ ret = _mm_shuffle_epi_1001((a)); \
++ break; \
++ case _MM_SHUFFLE(0, 1, 0, 1): \
++ ret = _mm_shuffle_epi_0101((a)); \
++ break; \
++ case _MM_SHUFFLE(2, 2, 1, 1): \
++ ret = _mm_shuffle_epi_2211((a)); \
++ break; \
++ case _MM_SHUFFLE(0, 1, 2, 2): \
++ ret = _mm_shuffle_epi_0122((a)); \
++ break; \
++ case _MM_SHUFFLE(3, 3, 3, 2): \
++ ret = _mm_shuffle_epi_3332((a)); \
++ break; \
++ case _MM_SHUFFLE(0, 0, 0, 0): \
++ ret = _mm_shuffle_epi32_splat((a), 0); \
++ break; \
++ case _MM_SHUFFLE(1, 1, 1, 1): \
++ ret = _mm_shuffle_epi32_splat((a), 1); \
++ break; \
++ case _MM_SHUFFLE(2, 2, 2, 2): \
++ ret = _mm_shuffle_epi32_splat((a), 2); \
++ break; \
++ case _MM_SHUFFLE(3, 3, 3, 3): \
++ ret = _mm_shuffle_epi32_splat((a), 3); \
++ break; \
++ default: \
++ ret = _mm_shuffle_epi32_default((a), (imm)); \
++ break; \
++ } \
++ ret; \
++ })
++
++// Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified
++// by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
++// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
++// __constrange(0,255) int imm)
++#define _mm_shufflelo_epi16_function(a, imm) \
++ ({ \
++ int16x8_t ret = vreinterpretq_s16_s32(a); \
++ int16x4_t lowBits = vget_low_s16(ret); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) &0x3), ret, 4); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
++ 5); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
++ 6); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
++ 7); \
++ vreinterpretq_s32_s16(ret); \
++ })
++
++// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int
++// imm)
++#define _mm_shufflelo_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
++
++// Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified
++// by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx
++// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a,
++// __constrange(0,255) int imm)
++#define _mm_shufflehi_epi16_function(a, imm) \
++ ({ \
++ int16x8_t ret = vreinterpretq_s16_s32(a); \
++ int16x4_t highBits = vget_high_s16(ret); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) &0x3), ret, 4); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
++ 5); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
++ 6); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
++ 7); \
++ vreinterpretq_s32_s16(ret); \
++ })
++
++// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int
++// imm)
++#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
++
++// Shifts the 4 signed 32-bit integers in a right by count bits while shifting
++// in the sign bit.
++//
++// r0 := a0 >> count
++// r1 := a1 >> count
++// r2 := a2 >> count
++// r3 := a3 >> count immediate
++FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, int count)
++{
++ return vshlq_s32(a, vdupq_n_s32(-count));
++}
++
++// Shifts the 8 signed 16-bit integers in a right by count bits while shifting
++// in the sign bit.
++//
++// r0 := a0 >> count
++// r1 := a1 >> count
++// ...
++// r7 := a7 >> count
++FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int count)
++{
++ return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
++}
++
++// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while
++// shifting in zeros.
++//
++// r0 := a0 << count
++// r1 := a1 << count
++// ...
++// r7 := a7 << count
++//
++// https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx
++#define _mm_slli_epi16(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 31) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_s16( \
++ vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while
++// shifting in zeros. :
++// https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx
++// FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm)
++#define _mm_slli_epi32(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 31) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_s32( \
++ vshlq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
++// store the results in dst.
++#define _mm_slli_epi64(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 63) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_s64( \
++ vshlq_n_s64(vreinterpretq_s64_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shifts the 8 signed or unsigned 16-bit integers in a right by count bits
++// while shifting in zeros.
++//
++// r0 := srl(a0, count)
++// r1 := srl(a1, count)
++// ...
++// r7 := srl(a7, count)
++//
++// https://msdn.microsoft.com/en-us/library/6tcwd38t(v=vs.90).aspx
++#define _mm_srli_epi16(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 31) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_u16( \
++ vshrq_n_u16(vreinterpretq_u16_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shifts the 4 signed or unsigned 32-bit integers in a right by count bits
++// while shifting in zeros.
++// https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx FORCE_INLINE
++// __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
++#define _mm_srli_epi32(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 31) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_u32( \
++ vshrq_n_u32(vreinterpretq_u32_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
++// store the results in dst.
++#define _mm_srli_epi64(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 63) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_u64( \
++ vshrq_n_u64(vreinterpretq_u64_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shifts the 4 signed 32 - bit integers in a right by count bits while shifting
++// in the sign bit.
++// https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx
++// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
++#define _mm_srai_epi32(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 31) { \
++ ret = vreinterpretq_m128i_s32( \
++ vshrq_n_s32(vreinterpretq_s32_m128i(a), 16)); \
++ ret = vreinterpretq_m128i_s32( \
++ vshrq_n_s32(vreinterpretq_s32_m128i(ret), 16)); \
++ } else { \
++ ret = vreinterpretq_m128i_s32( \
++ vshrq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shifts the 128 - bit value in a right by imm bytes while shifting in
++// zeros.imm must be an immediate.
++//
++// r := srl(a, imm*8)
++//
++// https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx
++// FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm)
++#define _mm_srli_si128(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 15) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_s8( \
++ vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \
++ } \
++ ret; \
++ })
++
++// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm
++// must be an immediate.
++//
++// r := a << (imm * 8)
++//
++// https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx
++// FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm)
++#define _mm_slli_si128(a, imm) \
++ ({ \
++ __m128i ret; \
++ if ((imm) <= 0) { \
++ ret = a; \
++ } else if ((imm) > 15) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_s8(vextq_s8( \
++ vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \
++ } \
++ ret; \
++ })
++
++// NEON does not provide a version of this function, here is an article about
++// some ways to repro the results.
++// http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon
++// Creates a 16-bit mask from the most significant bits of the 16 signed or
++// unsigned 8-bit integers in a and zero extends the upper bits.
++// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx
++FORCE_INLINE int _mm_movemask_epi8(__m128i _a)
++{
++ uint8x16_t input = vreinterpretq_u8_m128i(_a);
++ static const int8_t __attribute__((aligned(16)))
++ xr[8] = {-7, -6, -5, -4, -3, -2, -1, 0};
++ uint8x8_t mask_and = vdup_n_u8(0x80);
++ int8x8_t mask_shift = vld1_s8(xr);
++
++ uint8x8_t lo = vget_low_u8(input);
++ uint8x8_t hi = vget_high_u8(input);
++
++ lo = vand_u8(lo, mask_and);
++ lo = vshl_u8(lo, mask_shift);
++
++ hi = vand_u8(hi, mask_and);
++ hi = vshl_u8(hi, mask_shift);
++
++ lo = vpadd_u8(lo, lo);
++ lo = vpadd_u8(lo, lo);
++ lo = vpadd_u8(lo, lo);
++
++ hi = vpadd_u8(hi, hi);
++ hi = vpadd_u8(hi, hi);
++ hi = vpadd_u8(hi, hi);
++
++ return ((hi[0] << 8) | (lo[0] & 0xFF));
++}
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and
++// mask, and return 1 if the result is zero, otherwise return 0.
++// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros&expand=5871
++FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
++{
++ int64x2_t a_and_mask =
++ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
++ return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0
++ : 1;
++}
++
++// ******************************************
++// Math operations
++// ******************************************
++
++// Subtracts the four single-precision, floating-point values of a and b.
++//
++// r0 := a0 - b0
++// r1 := a1 - b1
++// r2 := a2 - b2
++// r3 := a3 - b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a,
++// and store the results in dst.
++// r0 := a0 - b0
++// r1 := a1 - b1
++FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s64(
++ vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
++}
++
++// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or
++// unsigned 32-bit integers of a.
++//
++// r0 := a0 - b0
++// r1 := a1 - b1
++// r2 := a2 - b2
++// r3 := a3 - b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128_f32(
++ vsubq_s32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit
++// integers of a and saturates..
++// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
++}
++
++// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit
++// integers of a and saturates.
++//
++// r0 := UnsignedSaturate(a0 - b0)
++// r1 := UnsignedSaturate(a1 - b1)
++// ...
++// r15 := UnsignedSaturate(a15 - b15)
++//
++// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90)
++FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers
++// of a and saturates.
++//
++// r0 := SignedSaturate(a0 - b0)
++// r1 := SignedSaturate(a1 - b1)
++// ...
++// r7 := SignedSaturate(a7 - b7)
++FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
++}
++
++FORCE_INLINE __m128i _mm_sign_epi32(__m128i a, __m128i b)
++{
++ __m128i zer0 = vdupq_n_s32(0);
++ __m128i ltMask = vreinterpretq_s32_u32(vcltq_s32(b, zer0));
++ __m128i gtMask = vreinterpretq_s32_u32(vcgtq_s32(b, zer0));
++ __m128i neg = vnegq_s32(a);
++ __m128i tmp = vandq_s32(a, gtMask);
++ return vorrq_s32(tmp, vandq_s32(neg, ltMask));
++}
++
++FORCE_INLINE __m128i _mm_sign_epi16(__m128i a, __m128i b)
++{
++ int16x8_t zer0 = vdupq_n_s16(0);
++ int16x8_t ltMask =
++ vreinterpretq_s16_u16(vcltq_s16(vreinterpretq_s16_s32(b), zer0));
++ int16x8_t gtMask =
++ vreinterpretq_s16_u16(vcgtq_s16(vreinterpretq_s16_s32(b), zer0));
++ int16x8_t neg = vnegq_s16(vreinterpretq_s16_s32(a));
++ int16x8_t tmp = vandq_s16(vreinterpretq_s16_s32(a), gtMask);
++ return vreinterpretq_s32_s16(vorrq_s16(tmp, vandq_s16(neg, ltMask)));
++}
++
++// Adds the four single-precision, floating-point values of a and b.
++//
++// r0 := a0 + b0
++// r1 := a1 + b1
++// r2 := a2 + b2
++// r3 := a3 + b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// adds the scalar single-precision floating point values of a and b.
++// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
++{
++ float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
++ float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
++ // the upper values in the result must be the remnants of <a>.
++ return vreinterpretq_m128_f32(vaddq_f32(a, value));
++}
++
++// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or
++// unsigned 32-bit integers in b.
++// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
++{
++ return vreinterpretq_s32_s64(
++ vaddq_s64(vreinterpretq_s64_s32(a), vreinterpretq_s64_s32(b)));
++}
++
++// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or
++// unsigned 32-bit integers in b.
++//
++// r0 := a0 + b0
++// r1 := a1 + b1
++// r2 := a2 + b2
++// r3 := a3 + b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or
++// unsigned 16-bit integers in b.
++// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or
++// unsigned 8-bit integers in b.
++// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90)
++FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b
++// and saturates.
++//
++// r0 := SignedSaturate(a0 + b0)
++// r1 := SignedSaturate(a1 + b1)
++// ...
++// r7 := SignedSaturate(a7 + b7)
++//
++// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in
++// b and saturates..
++// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or
++// unsigned 16-bit integers from b.
++//
++// r0 := (a0 * b0)[15:0]
++// r1 := (a1 * b1)[15:0]
++// ...
++// r7 := (a7 * b7)[15:0]
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or
++// unsigned 32-bit integers from b.
++// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Multiplies the four single-precision, floating-point values of a and b.
++//
++// r0 := a0 * b0
++// r1 := a1 * b1
++// r2 := a2 * b2
++// r3 := a3 * b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
++// a and b, and store the unsigned 64-bit results in dst.
++//
++// r0 := (uint32_t*)a0 * (uint32_t*)b0
++// r1 := (uint32_t*)a2 * (uint32_t*)b2
++#if 1 /* C version */
++FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
++{
++ __m128i d;
++ vreinterpretq_nth_u64_m128i(d, 0) =
++ (uint64_t)(vreinterpretq_nth_u32_m128i(a, 0)) *
++ (uint64_t)(vreinterpretq_nth_u32_m128i(b, 0));
++ vreinterpretq_nth_u64_m128i(d, 1) =
++ (uint64_t)(vreinterpretq_nth_u32_m128i(a, 2)) *
++ (uint64_t)(vreinterpretq_nth_u32_m128i(b, 2));
++ return d;
++}
++#else /* Neon version */
++// Default to c version until casting can be sorted out on neon version.
++// (Otherwise requires compiling with -fpermissive) Also unclear whether neon
++// version actually performs better.
++FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
++{
++ // shuffle: 0, 1, 2, 3 -> 0, 2, 1, 3 */
++ __m128i const a_shuf =
++ *(__m128i *) (&vzip_u32(vget_low_u32(vreinterpretq_u32_m128i(a)),
++ vget_high_u32(vreinterpretq_u32_m128i(a))));
++ __m128i const b_shuf =
++ *(__m128i *) (&vzip_u32(vget_low_u32(vreinterpretq_u32_m128i(b)),
++ vget_high_u32(vreinterpretq_u32_m128i(b))));
++ // Multiply low word (32 bit) against low word (32 bit) and high word (32
++ // bit) against high word (32 bit). Pack both results (64 bit) into 128 bit
++ // register and return result.
++ return vreinterpretq_m128i_u64(
++ vmull_u32(vget_low_u32(vreinterpretq_u32_m128i(a_shuf)),
++ vget_low_u32(vreinterpretq_u32_m128i(b_shuf))));
++}
++#endif
++
++// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
++// integers from b.
++//
++// r0 := (a0 * b0) + (a1 * b1)
++// r1 := (a2 * b2) + (a3 * b3)
++// r2 := (a4 * b4) + (a5 * b5)
++// r3 := (a6 * b6) + (a7 * b7)
++// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
++{
++ int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
++ vget_low_s16(vreinterpretq_s16_m128i(b)));
++ int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
++ vget_high_s16(vreinterpretq_s16_m128i(b)));
++
++ int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
++ int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
++
++ return vreinterpretq_s32_m128i(vcombine_s32(low_sum, high_sum));
++}
++
++// Computes the absolute difference of the 16 unsigned 8-bit integers from a
++// and the 16 unsigned 8-bit integers from b.
++//
++// Return Value
++// Sums the upper 8 differences and lower 8 differences and packs the
++// resulting 2 unsigned 16-bit integers into the upper and lower 64-bit
++// elements.
++//
++// r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)
++// r1 := 0x0
++// r2 := 0x0
++// r3 := 0x0
++// r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)
++// r5 := 0x0
++// r6 := 0x0
++// r7 := 0x0
++FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
++{
++ uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
++ uint16_t r0 = t[0] + t[1] + t[2] + t[3];
++ uint16_t r4 = t[4] + t[5] + t[6] + t[7];
++ uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0);
++ return (__m128i) vsetq_lane_u16(r4, r, 4);
++}
++
++// Divides the four single-precision, floating-point values of a and b.
++//
++// r0 := a0 / b0
++// r1 := a1 / b1
++// r2 := a2 / b2
++// r3 := a3 / b3
++//
++// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
++{
++ float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b));
++ float32x4_t recip1 =
++ vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b)));
++ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1));
++}
++
++// Divides the scalar single-precision floating point value of a by b.
++// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
++{
++ float32_t value =
++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
++}
++
++// This version does additional iterations to improve accuracy. Between 1 and 4
++// recommended. Computes the approximations of reciprocals of the four
++// single-precision, floating-point values of a.
++// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
++FORCE_INLINE __m128 recipq_newton(__m128 in, int n)
++{
++ int i;
++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
++ for (i = 0; i < n; ++i) {
++ recip =
++ vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
++ }
++ return vreinterpretq_m128_f32(recip);
++}
++
++// Computes the approximations of reciprocals of the four single-precision,
++// floating-point values of a.
++// https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
++{
++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
++ return vreinterpretq_m128_f32(recip);
++}
++
++// Computes the approximations of square roots of the four single-precision,
++// floating-point values of a. First computes reciprocal square roots and then
++// reciprocals of the four values.
++//
++// r0 := sqrt(a0)
++// r1 := sqrt(a1)
++// r2 := sqrt(a2)
++// r3 := sqrt(a3)
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
++{
++ float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in));
++ float32x4_t sq = vrecpeq_f32(recipsq);
++ // ??? use step versions of both sqrt and recip for better accuracy?
++ return vreinterpretq_m128_f32(sq);
++}
++
++// Computes the approximation of the square root of the scalar single-precision
++// floating point value of in.
++// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
++{
++ float32_t value =
++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
++}
++
++// Computes the approximations of the reciprocal square roots of the four
++// single-precision floating point values of in.
++// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
++{
++ return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in)));
++}
++
++// Computes the maximums of the four single-precision, floating-point values of
++// a and b.
++// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Computes the minima of the four single-precision, floating-point values of a
++// and b.
++// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Computes the maximum of the two lower scalar single-precision floating point
++// values of a and b.
++// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
++{
++ float32_t value = vgetq_lane_f32(
++ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
++}
++
++// Computes the minimum of the two lower scalar single-precision floating point
++// values of a and b.
++// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
++{
++ float32_t value = vgetq_lane_f32(
++ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
++}
++
++// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the
++// 16 unsigned 8-bit integers from b.
++// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the
++// 16 unsigned 8-bit integers from b.
++// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx
++FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8
++// signed 16-bit integers from b.
++// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8
++// signed 16-bit integers from b.
++// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// epi versions of min/max
++// Computes the pariwise maximums of the four signed 32-bit integer values of a
++// and b.
++//
++// A 128-bit parameter that can be defined with the following equations:
++// r0 := (a0 > b0) ? a0 : b0
++// r1 := (a1 > b1) ? a1 : b1
++// r2 := (a2 > b2) ? a2 : b2
++// r3 := (a3 > b3) ? a3 : b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Computes the pariwise minima of the four signed 32-bit integer values of a
++// and b.
++//
++// A 128-bit parameter that can be defined with the following equations:
++// r0 := (a0 < b0) ? a0 : b0
++// r1 := (a1 < b1) ? a1 : b1
++// r2 := (a2 < b2) ? a2 : b2
++// r3 := (a3 < b3) ? a3 : b3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit
++// integers from b.
++//
++// r0 := (a0 * b0)[31:16]
++// r1 := (a1 * b1)[31:16]
++// ...
++// r7 := (a7 * b7)[31:16]
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
++{
++ /* FIXME: issue with large values because of result saturation */
++ // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
++ // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
++ // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
++ int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
++ int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
++ int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
++ int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
++ uint16x8x2_t r =
++ vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
++ return vreinterpretq_m128i_u16(r.val[1]);
++}
++
++// Computes pairwise add of each argument as single-precision, floating-point
++// values a and b.
++// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx
++FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
++{
++#if defined(__aarch64__)
++ return vreinterpretq_m128_f32(vpaddq_f32(
++ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); // AArch64
++#else
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
++#endif
++}
++
++// ******************************************
++// Compare operations
++// ******************************************
++
++// Compares for less than
++// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compares for greater than.
++//
++// r0 := (a0 > b0) ? 0xffffffff : 0x0
++// r1 := (a1 > b1) ? 0xffffffff : 0x0
++// r2 := (a2 > b2) ? 0xffffffff : 0x0
++// r3 := (a3 > b3) ? 0xffffffff : 0x0
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compares for greater than or equal.
++// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compares for less than or equal.
++//
++// r0 := (a0 <= b0) ? 0xffffffff : 0x0
++// r1 := (a1 <= b1) ? 0xffffffff : 0x0
++// r2 := (a2 <= b2) ? 0xffffffff : 0x0
++// r3 := (a3 <= b3) ? 0xffffffff : 0x0
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compares for equality.
++// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or
++// unsigned 8-bit integers in b for equality.
++// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or
++// unsigned 16-bit integers in b for equality.
++// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compare packed 32-bit integers in a and b for equality, and store the results
++// in dst
++FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
++// in b for lesser than.
++// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers
++// in b for greater than.
++//
++// r0 := (a0 > b0) ? 0xff : 0x0
++// r1 := (a1 > b1) ? 0xff : 0x0
++// ...
++// r15 := (a15 > b15) ? 0xff : 0x0
++//
++// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers
++// in b for greater than.
++//
++// r0 := (a0 > b0) ? 0xffff : 0x0
++// r1 := (a1 > b1) ? 0xffff : 0x0
++// ...
++// r7 := (a7 > b7) ? 0xffff : 0x0
++//
++// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++
++// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
++// in b for less than.
++// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers
++// in b for greater than.
++// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compares the four 32-bit floats in a and b to check if any values are NaN.
++// Ordered compare between each value returns true for "orderable" and false for
++// "not orderable" (NaN).
++// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see
++// also:
++// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
++// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
++FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
++{
++ // Note: NEON does not have ordered compare builtin
++ // Need to compare a eq a and b eq b to check for NaN
++ // Do AND of results to get final
++ uint32x4_t ceqaa =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t ceqbb =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
++}
++
++// Compares the lower single-precision floating point scalar values of a and b
++// using a less than operation. :
++// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important
++// note!! The documentation on MSDN is incorrect! If either of the values is a
++// NAN the docs say you will get a one, but in fact, it will return a zero!!
++FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
++{
++ uint32x4_t a_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t b_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
++ uint32x4_t a_lt_b =
++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0;
++}
++
++// Compares the lower single-precision floating point scalar values of a and b
++// using a greater than operation. :
++// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx
++FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
++{
++ // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a),
++ // vreinterpretq_f32_m128(b)), 0);
++ uint32x4_t a_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t b_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
++ uint32x4_t a_gt_b =
++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0;
++}
++
++// Compares the lower single-precision floating point scalar values of a and b
++// using a less than or equal operation. :
++// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx
++FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
++{
++ // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a),
++ // vreinterpretq_f32_m128(b)), 0);
++ uint32x4_t a_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t b_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
++ uint32x4_t a_le_b =
++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0;
++}
++
++// Compares the lower single-precision floating point scalar values of a and b
++// using a greater than or equal operation. :
++// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx
++FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
++{
++ // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a),
++ // vreinterpretq_f32_m128(b)), 0);
++ uint32x4_t a_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t b_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
++ uint32x4_t a_ge_b =
++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0;
++}
++
++// Compares the lower single-precision floating point scalar values of a and b
++// using an equality operation. :
++// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx
++FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
++{
++ // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
++ // vreinterpretq_f32_m128(b)), 0);
++ uint32x4_t a_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t b_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
++ uint32x4_t a_eq_b =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0;
++}
++
++// Compares the lower single-precision floating point scalar values of a and b
++// using an inequality operation. :
++// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx
++FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
++{
++ // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a),
++ // vreinterpretq_f32_m128(b)), 0);
++ uint32x4_t a_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t b_not_nan =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
++ uint32x4_t a_neq_b = vmvnq_u32(
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++ return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0;
++}
++
++// according to the documentation, these intrinsics behave the same as the
++// non-'u' versions. We'll just alias them here.
++#define _mm_ucomilt_ss _mm_comilt_ss
++#define _mm_ucomile_ss _mm_comile_ss
++#define _mm_ucomigt_ss _mm_comigt_ss
++#define _mm_ucomige_ss _mm_comige_ss
++#define _mm_ucomieq_ss _mm_comieq_ss
++#define _mm_ucomineq_ss _mm_comineq_ss
++
++// ******************************************
++// Conversions
++// ******************************************
++
++// Converts the four single-precision, floating-point values of a to signed
++// 32-bit integer values using truncate.
++// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
++{
++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
++}
++
++// Converts the four signed 32-bit integer values of a to single-precision,
++// floating-point values
++// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx
++FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
++{
++ return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
++}
++
++// Converts the four unsigned 8-bit integers in the lower 32 bits to four
++// unsigned 32-bit integers.
++// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx
++FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
++{
++ uint8x16_t u8x16 = vreinterpretq_u8_s32(a); /* xxxx xxxx xxxx DCBA */
++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
++ return vreinterpretq_s32_u32(u32x4);
++}
++
++// Converts the four signed 16-bit integers in the lower 64 bits to four signed
++// 32-bit integers.
++// https://msdn.microsoft.com/en-us/library/bb514079%28v=vs.100%29.aspx
++FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
++{
++ return vreinterpretq_m128i_s32(
++ vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
++}
++
++// Converts the four single-precision, floating-point values of a to signed
++// 32-bit integer values.
++//
++// r0 := (int) a0
++// r1 := (int) a1
++// r2 := (int) a2
++// r3 := (int) a3
++//
++// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx
++// *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7-A
++// does not support! It is supported on ARMv8-A however.
++FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
++{
++#if defined(__aarch64__)
++ return vcvtnq_s32_f32(a);
++#else
++ uint32x4_t signmask = vdupq_n_u32(0x80000000);
++ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
++ vdupq_n_f32(0.5f)); /* +/- 0.5 */
++ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
++ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
++ int32x4_t r_trunc =
++ vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
++ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
++ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
++ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
++ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
++ float32x4_t delta = vsubq_f32(
++ vreinterpretq_f32_m128(a),
++ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
++ uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */
++ return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal));
++#endif
++}
++
++// Moves the least significant 32 bits of a to a 32-bit integer.
++// https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx
++FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
++{
++ return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
++}
++
++// Extracts the low order 64-bit integer from the parameter.
++// https://msdn.microsoft.com/en-us/library/bb531384(v=vs.120).aspx
++FORCE_INLINE uint64_t _mm_cvtsi128_si64(__m128i a)
++{
++ return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
++}
++
++// Moves 32-bit integer a to the least significant 32 bits of an __m128 object,
++// zero extending the upper bits.
++//
++// r0 := a
++// r1 := 0x0
++// r2 := 0x0
++// r3 := 0x0
++//
++// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx
++FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
++{
++ return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
++}
++
++// Applies a type cast to reinterpret four 32-bit floating point values passed
++// in as a 128-bit parameter as packed 32-bit integers.
++// https://msdn.microsoft.com/en-us/library/bb514099.aspx
++FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
++{
++ return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
++}
++
++// Applies a type cast to reinterpret four 32-bit integers passed in as a
++// 128-bit parameter as packed 32-bit floating point values.
++// https://msdn.microsoft.com/en-us/library/bb514029.aspx
++FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
++{
++ return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
++}
++
++// Loads 128-bit value. :
++// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx
++FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
++{
++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
++}
++
++// Loads 128-bit value. :
++// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx
++FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
++{
++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
++}
++
++// ******************************************
++// Miscellaneous Operations
++// ******************************************
++
++// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and
++// saturates.
++// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx
++FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
++ vqmovn_s16(vreinterpretq_s16_m128i(b))));
++}
++
++// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned
++// integers and saturates.
++//
++// r0 := UnsignedSaturate(a0)
++// r1 := UnsignedSaturate(a1)
++// ...
++// r7 := UnsignedSaturate(a7)
++// r8 := UnsignedSaturate(b0)
++// r9 := UnsignedSaturate(b1)
++// ...
++// r15 := UnsignedSaturate(b7)
++//
++// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
++ vqmovun_s16(vreinterpretq_s16_m128i(b))));
++}
++
++// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers
++// and saturates.
++//
++// r0 := SignedSaturate(a0)
++// r1 := SignedSaturate(a1)
++// r2 := SignedSaturate(a2)
++// r3 := SignedSaturate(a3)
++// r4 := SignedSaturate(b0)
++// r5 := SignedSaturate(b1)
++// r6 := SignedSaturate(b2)
++// r7 := SignedSaturate(b3)
++//
++// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx
++FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
++ vqmovn_s32(vreinterpretq_s32_m128i(b))));
++}
++
++// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower
++// 8 signed or unsigned 8-bit integers in b.
++//
++// r0 := a0
++// r1 := b0
++// r2 := a1
++// r3 := b1
++// ...
++// r14 := a7
++// r15 := b7
++//
++// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx
++FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
++{
++ int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
++ int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
++ int8x8x2_t result = vzip_s8(a1, b1);
++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
++}
++
++// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the
++// lower 4 signed or unsigned 16-bit integers in b.
++//
++// r0 := a0
++// r1 := b0
++// r2 := a1
++// r3 := b1
++// r4 := a2
++// r5 := b2
++// r6 := a3
++// r7 := b3
++//
++// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx
++FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
++{
++ int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
++ int16x4x2_t result = vzip_s16(a1, b1);
++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
++}
++
++// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the
++// lower 2 signed or unsigned 32 - bit integers in b.
++//
++// r0 := a0
++// r1 := b0
++// r2 := a1
++// r3 := b1
++//
++// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
++{
++ int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
++ int32x2x2_t result = vzip_s32(a1, b1);
++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
++}
++
++FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
++{
++ int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
++ int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
++ return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
++}
++
++// Selects and interleaves the lower two single-precision, floating-point values
++// from a and b.
++//
++// r0 := a0
++// r1 := b0
++// r2 := a1
++// r3 := b1
++//
++// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx
++FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
++{
++ float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
++ float32x2x2_t result = vzip_f32(a1, b1);
++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
++}
++
++// Selects and interleaves the upper two single-precision, floating-point values
++// from a and b.
++//
++// r0 := a2
++// r1 := b2
++// r2 := a3
++// r3 := b3
++//
++// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx
++FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
++{
++ float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
++ float32x2x2_t result = vzip_f32(a1, b1);
++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
++}
++
++// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper
++// 8 signed or unsigned 8-bit integers in b.
++//
++// r0 := a8
++// r1 := b8
++// r2 := a9
++// r3 := b9
++// ...
++// r14 := a15
++// r15 := b15
++//
++// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
++{
++ int8x8_t a1 =
++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
++ int8x8_t b1 =
++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
++ int8x8x2_t result = vzip_s8(a1, b1);
++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
++}
++
++// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the
++// upper 4 signed or unsigned 16-bit integers in b.
++//
++// r0 := a4
++// r1 := b4
++// r2 := a5
++// r3 := b5
++// r4 := a6
++// r5 := b6
++// r6 := a7
++// r7 := b7
++//
++// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
++{
++ int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
++ int16x4x2_t result = vzip_s16(a1, b1);
++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
++}
++
++// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the
++// upper 2 signed or unsigned 32-bit integers in b.
++// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx
++FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
++{
++ int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
++ int32x2x2_t result = vzip_s32(a1, b1);
++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
++}
++
++// Interleaves the upper signed or unsigned 64-bit integer in a with the
++// upper signed or unsigned 64-bit integer in b.
++//
++// r0 := a1
++// r1 := b1
++FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
++{
++ int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
++ int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
++ return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
++}
++
++// shift to right
++// https://msdn.microsoft.com/en-us/library/bb514041(v=vs.120).aspx
++// http://blog.csdn.net/hemmingway/article/details/44828303
++FORCE_INLINE __m128i _mm_alignr_epi8(__m128i a, __m128i b, const int c)
++{
++ return (__m128i) vextq_s8((int8x16_t) a, (int8x16_t) b, c);
++}
++
++// Extracts the selected signed or unsigned 16-bit integer from a and zero
++// extends. https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx
++// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
++#define _mm_extract_epi16(a, imm) \
++ ({ (vgetq_lane_s16(vreinterpretq_s16_m128i(a), (imm)) & 0x0000ffffUL); })
++
++// Inserts the least significant 16 bits of b into the selected 16-bit integer
++// of a. https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx
++// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, const int b,
++// __constrange(0,8) int imm)
++#define _mm_insert_epi16(a, b, imm) \
++ ({ \
++ vreinterpretq_m128i_s16( \
++ vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \
++ })
++
++// ******************************************
++// Crypto Extensions
++// ******************************************
++#if !defined(__ARM_FEATURE_CRYPTO) && defined(__aarch64__)
++// In the absence of crypto extensions, implement aesenc using regular neon
++// intrinsics instead. See:
++// http://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
++// http://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
++// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52
++// for more information Reproduced with permission of the author.
++FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey)
++{
++ static const uint8_t crypto_aes_sbox[256] = {
++ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
++ 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
++ 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
++ 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
++ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
++ 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
++ 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
++ 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
++ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
++ 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
++ 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
++ 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
++ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
++ 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
++ 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
++ 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
++ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
++ 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
++ 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
++ 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
++ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
++ 0xb0, 0x54, 0xbb, 0x16};
++ static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9,
++ 0xe, 0x3, 0x8, 0xd, 0x2, 0x7,
++ 0xc, 0x1, 0x6, 0xb};
++ static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc};
++
++ uint8x16_t v;
++ uint8x16_t w = vreinterpretq_u8_m128i(EncBlock);
++
++ // shift rows
++ w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
++
++ // sub bytes
++ v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w);
++ v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40);
++ v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80);
++ v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0);
++
++ // mix columns
++ w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b);
++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
++
++ // add round key
++ return vreinterpretq_m128i_u8(w) ^ RoundKey;
++}
++#elif defined(__ARM_FEATURE_CRYPTO)
++// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
++// AESMC and then manually applying the real key as an xor operation This
++// unfortunately means an additional xor op; the compiler should be able to
++// optimise this away for repeated calls however See
++// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
++// for more details.
++inline __m128i _mm_aesenc_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_s32_u8(
++ vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_s32(a), uint8x16_t{})) ^
++ vreinterpretq_u8_s32(b));
++}
++#endif
++
++// ******************************************
++// Streaming Extensions
++// ******************************************
++
++// Guarantees that every preceding store is globally visible before any
++// subsequent store.
++// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx
++FORCE_INLINE void _mm_sfence(void)
++{
++ __sync_synchronize();
++}
++
++// Stores the data in a to the address p without polluting the caches. If the
++// cache line containing address p is already in the cache, the cache will be
++// updated.Address p must be 16 - byte aligned.
++// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx
++FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
++{
++ vst1q_s32((int32_t *) p, a);
++}
++
++// Cache line containing p is flushed and invalidated from all caches in the
++// coherency domain. :
++// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx
++FORCE_INLINE void _mm_clflush(void const *p)
++{
++ // no corollary for Neon?
++}
++
++#if defined(__GNUC__) || defined(__clang__)
++#pragma pop_macro("ALIGN_STRUCT")
++#pragma pop_macro("FORCE_INLINE")
++#endif
++
++#endif
+diff --git a/vendor/spoa/src/simd_alignment_engine.cpp b/vendor/spoa/src/simd_alignment_engine.cpp
+index 3e5815a..2fd10d7 100644
+--- a/vendor/spoa/src/simd_alignment_engine.cpp
++++ b/vendor/spoa/src/simd_alignment_engine.cpp
+@@ -7,9 +7,12 @@
+ #include <algorithm>
+ #include <limits>
+
++#include "arch/aarch64/sse2neon.h"
++/*
+ extern "C" {
+ #include <immintrin.h> // AVX2 and lower
+ }
++*/
+
+ #include "spoa/graph.hpp"
+ #include "simd_alignment_engine.hpp"
diff --git a/var/spack/repos/builtin/packages/racon/package.py b/var/spack/repos/builtin/packages/racon/package.py
index 35f5eabf31..1e661b4bd7 100644
--- a/var/spack/repos/builtin/packages/racon/package.py
+++ b/var/spack/repos/builtin/packages/racon/package.py
@@ -29,10 +29,8 @@ class Racon(CMakePackage):
conflicts('%gcc@:4.7')
conflicts('%clang@:3.1')
+ patch('aarch64.patch', when='target=aarch64:')
+
def cmake_args(self):
args = ['-Dracon_build_wrapper=ON']
return args
-
- def install(self, spec, prefix):
- install_tree('spack-build/bin', prefix.bin)
- install_tree('spack-build/lib', prefix.lib)