Age | Commit message (Collapse) | Author | Files | Lines |
|
This removes all but one usage of runtime hash. The runtime hash was being used to write
historical lockfiles for tests, but we don't need it for that; we can just save those
lockfiles.
- [x] add legacy lockfiles for v1, v2, v3
- [x] fix bugs with v1 lockfile tests (the dummy lockfile we were writing was not actually
a v1 lockfile because it used the new spec file format).
- [x] remove all but one runtime_hash usage -- that one needs a small rework of the
concretizer to really fix, as it's about separate concretization of build
dependencies.
- [x] Document the history of the lockfile format in `environment/__init__.py`
|
|
|
|
|
|
* Enable reuse by default in Spack
* Update documentation to match new default
* Configure pipelines not to reuse software
|
|
For tutorial builds, we should continue to allow deprecated builds to be installed. We
can update them as needed when we update the tutorial, but we don't need to correct them
immediately on deprecation in CI.
- [x] add `deprecated:true` to tutorial `spack.yaml` config.
|
|
|
|
* e4s on mac ci: set SPACK_DISABLE_LOCAL_CONFIG=1
* export SPACK_USER_CACHE_PATH so that ~/.spack/... isn't used
|
|
* ci: Enable the ParaView GUI in the DAVSDK pipeline
* qt: Patch for long paths in ci
|
|
`make` solves a lot of headaches that would otherwise have to be implemented in Spack:
1. Parallelism over packages through multiple `spack install` processes
2. Orderly output of parallel package installs thanks to `make --sync-output=recurse` or `make -Orecurse` (works well in GNU Make 4.3; macOS is unfortunately on a 16 years old 3.x version, but it's one `spack install gmake` away...)
3. Shared jobserver across packages, which means a single `-j` to rule them all, instead of manually finding a balance between `#spack install processes` & `#jobs per package` (See #30302).
This pr adds the `spack env depfile` command that generates a Makefile with dag hashes as
targets, and dag hashes of dependencies as prerequisites, and a command
along the lines of `spack install --only=packages /hash` to just install
a single package.
It exposes two convenient phony targets: `all`, `fetch-all`. The former installs the environment, the latter just fetches all sources. So one can either use `make all -j16` directly or run `make fetch-all -j16` on a login node and `make all -j16` on a compute node.
Example:
```yaml
spack:
specs: [perl]
view: false
```
running
```
$ spack -e . env depfile --make-target-prefix env | tee Makefile
```
generates
```Makefile
SPACK ?= spack
.PHONY: env/all env/fetch-all env/clean
env/all: env/env
env/fetch-all: env/fetch
env/env: env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww
@touch $@
env/fetch: env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc
@touch $@
env/dirs:
@mkdir -p env/.fetch env/.install
env/.fetch/%: | env/dirs
$(info Fetching $(SPEC))
$(SPACK) -e '/tmp/tmp.7PHPSIRACv' fetch $(SPACK_FETCH_FLAGS) /$(notdir $@) && touch $@
env/.install/%: env/.fetch/%
$(info Installing $(SPEC))
+$(SPACK) -e '/tmp/tmp.7PHPSIRACv' install $(SPACK_INSTALL_FLAGS) --only-concrete --only=package --no-add /$(notdir $@) && touch $@
# Set the human-readable spec for each target
env/%/cdqldivylyxocqymwnfzmzc5sx2zwvww: SPEC = perl@5.34.1%gcc@10.3.0+cpanm+shared+threads arch=linux-ubuntu20.04-zen2
env/%/gv5kin2xnn33uxyfte6k4a3bynhmtxze: SPEC = berkeley-db@18.1.40%gcc@10.3.0+cxx~docs+stl patches=b231fcc arch=linux-ubuntu20.04-zen2
env/%/cuymc7e5gupwyu7vza5d4vrbuslk277p: SPEC = bzip2@1.0.8%gcc@10.3.0~debug~pic+shared arch=linux-ubuntu20.04-zen2
env/%/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: SPEC = diffutils@3.8%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws: SPEC = libiconv@1.16%gcc@10.3.0 libs=shared,static arch=linux-ubuntu20.04-zen2
env/%/yfz2agazed7ohevqvnrmm7jfkmsgwjao: SPEC = gdbm@1.19%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/73t7ndb5w72hrat5hsax4caox2sgumzu: SPEC = readline@8.1%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/trvdyncxzfozxofpm3cwgq4vecpxixzs: SPEC = ncurses@6.2%gcc@10.3.0~symlinks+termlib abi=none arch=linux-ubuntu20.04-zen2
env/%/sbzszb7v557ohyd6c2ekirx2t3ctxfxp: SPEC = pkgconf@1.8.0%gcc@10.3.0 arch=linux-ubuntu20.04-zen2
env/%/c4go4gxlcznh5p5nklpjm644epuh3pzc: SPEC = zlib@1.2.12%gcc@10.3.0+optimize+pic+shared patches=0d38234 arch=linux-ubuntu20.04-zen2
# Install dependencies
env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww: env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p: env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk
env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk: env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws
env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao: env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu
env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu: env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs
env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs: env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp
env/clean:
rm -f -- env/env env/fetch env/.fetch/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.fetch/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.fetch/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.fetch/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.fetch/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.fetch/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.fetch/73t7ndb5w72hrat5hsax4caox2sgumzu env/.fetch/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.fetch/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.fetch/c4go4gxlcznh5p5nklpjm644epuh3pzc env/.install/cdqldivylyxocqymwnfzmzc5sx2zwvww env/.install/gv5kin2xnn33uxyfte6k4a3bynhmtxze env/.install/cuymc7e5gupwyu7vza5d4vrbuslk277p env/.install/7vangk4jvsdgw6u6oe6ob63pyjl5cbgk env/.install/hyb7ehxxyqqp2hiw56bzm5ampkw6cxws env/.install/yfz2agazed7ohevqvnrmm7jfkmsgwjao env/.install/73t7ndb5w72hrat5hsax4caox2sgumzu env/.install/trvdyncxzfozxofpm3cwgq4vecpxixzs env/.install/sbzszb7v557ohyd6c2ekirx2t3ctxfxp env/.install/c4go4gxlcznh5p5nklpjm644epuh3pzc
```
Then with `make -O` you get very nice orderly output when packages are built in parallel:
```console
$ make -Orecurse -j16
spack -e . install --only-concrete --only=package /c4go4gxlcznh5p5nklpjm644epuh3pzc && touch c4go4gxlcznh5p5nklpjm644epuh3pzc
==> Installing zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
...
Fetch: 0.00s. Build: 0.88s. Total: 0.88s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/zlib-1.2.12-c4go4gxlcznh5p5nklpjm644epuh3pzc
spack -e . install --only-concrete --only=package /sbzszb7v557ohyd6c2ekirx2t3ctxfxp && touch sbzszb7v557ohyd6c2ekirx2t3ctxfxp
==> Installing pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
...
Fetch: 0.00s. Build: 3.96s. Total: 3.96s.
[+] /tmp/tmp.b1eTyAOe85/store/linux-ubuntu20.04-zen2/gcc-10.3.0/pkgconf-1.8.0-sbzszb7v557ohyd6c2ekirx2t3ctxfxp
```
For Perl, at least for me, using `make -j16` versus `spack -e . install -j16` speeds up the builds from 3m32.623s to 2m22.775s, as some configure scripts run in parallel.
Another nice feature is you can do Makefile "metaprogramming" and depend on packages built by Spack. This example fetches all sources (in parallel) first, print a message, and only then build packages (in parallel).
```Makefile
SPACK ?= spack
.PHONY: env
all: env
spack.lock: spack.yaml
$(SPACK) -e . concretize -f
env.mk: spack.lock
$(SPACK) -e . env depfile -o $@ --make-target-prefix spack
fetch: spack/fetch
@echo Fetched all packages && touch $@
env: fetch spack/env
@echo This executes after the environment has been installed
clean:
rm -rf spack/ env.mk spack.lock
ifeq (,$(filter clean,$(MAKECMDGOALS)))
include env.mk
endif
```
|
|
|
|
Gitlab pipelines run for spack already have other S3 storage locations
configured for storage of binaries, so this PR removes the redundant
per-pipeline mirror. As a result, the "cleanup" jobs will no longer be
generated at the end of each pipeline, removing one possible point of
pipeline failure.
|
|
|
|
|
|
This is an amended version of https://github.com/spack/spack/pull/24894 (reverted in https://github.com/spack/spack/pull/29603). https://github.com/spack/spack/pull/24894
broke all instances of `spack external find` (namely when it is invoked without arguments/options)
because it was mandating the presence of a file which most systems would not have.
This allows `spack external find` to proceed if that file is not present and adds tests for this.
- [x] Add a test which confirms that `spack external find` successfully reads a manifest file
if present in the default manifest path
--- Original commit message ---
Adds `spack external read-cray-manifest`, which reads a json file that describes a
set of package DAGs. The parsed results are stored directly in the database. A user
can see these installed specs with `spack find` (like any installed spec). The easiest
way to use them right now as dependencies is to run
`spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described
in the file to Spack's installation DB and will also install described compilers to the
compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR
registers the origin as "external-db"). In the future, it is assumed users may want
to be able to treat installs registered with this command differently (e.g. they may
want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec
is concrete
* I don't think the hashes of installed-and-concrete specs should change and this
was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied
(external specs may mention compilers that are not registered, and without this
change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do
something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will
remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
|
|
|
|
|
|
|
|
With an active environment, you can now run "spack concretize --quiet"
and it will suppress printing the concretized specs.
|
|
This PR updates the list of images we build nightly, deprecating
Ubuntu 16.04 and CentOS 8 and adding Ubuntu 20.04, Ubuntu 22.04
and CentOS Stream. It also removes a lot of duplication by generating
the Dockerfiles during the CI workflow and uploading them as artifacts
for later inspection or reuse.
|
|
* refactor powershell setup to make it sourceable
* only set editor if it is unset
* change directory to spack root in subshell
* Update share/spack/setup-env.ps1
Co-authored-by: John W. Parent <45471568+johnwparent@users.noreply.github.com>
Co-authored-by: John W. Parent <45471568+johnwparent@users.noreply.github.com>
|
|
gitlab ci: Set resource requests explicitly
This PR sets resource requests for the Kubernetes executor, which should aid in
better workload scheduling in the cluster. The specific values were derived from
profile data taken from several full "from scratch" rebuilds in a separate worker pool.
Co-authored-by: Zack Galbreath <zack.galbreath@kitware.com>
|
|
gitlab ci: Remove code for relating CDash builds
Relating CDash builds to their dependencies was a seldom used feature. Removing
it will make it easier for us to reorganize our CDash projects & build groups in the
future by eliminating the needs to keep track of CDash build ids in our binary mirrors.
|
|
* Add support for Python 3.10
* Update unit-tests to use 3.10
* Update Getting started section of the docs
* Update bootstrap action
|
|
* Extract the MetaPathFinder and Loaders for packages in their own classes
https://peps.python.org/pep-0451/
Currently, RepoPath and Repo implement the (deprecated) interface of
MetaPathFinder (find_module) and of Loader (load_module). This commit
extracts both of them and places the code in their own classes.
The MetaPathFinder interface is updated to contain both the deprecated
"find_module" (for Python 2.7 support) and the recommended "find_spec".
Update of the Loader interface is deferred at a subsequent commit.
* Move the lines to be prepended inside "RepoLoader"
Also adjust the naming of a few variables too
* Remove spack.util.imp, since code is only used in spack.repo
* Remove support from loading Python modules Python > 3 but < 3.5
* Remove `Repo._create_namespace`
This function was interacting badly with the MetaPathFinder
and causing issues with "normal" imports. Removing the
function allows to do things like:
```python
import spack.pkg.builtin.mpich
cls = spack.pkg.builtin.mpich.Mpich
```
* Remove code needed to trigger the Singleton evaluation
The finder is coded in a way to trigger the Singleton,
so we don't need external code now that we register it
at module level into `sys.meta_path`.
* Add unit tests
|
|
|
|
We've previously generated CI pipelines for PRs, and they rebuild any packages that don't have
a binary in an existing build cache. The assumption we were making was that ALL prior merged
builds would be in cache, but due to the way we do security in the pipeline, they aren't. `develop`
pipelines can take a while to catch up with the latest PRs, and while it does that, there may be a
bunch of redundant builds on PRs that duplicate things being rebuilt on `develop`. Until we can
do better caching of PR builds, we'll have this problem.
We can do better in PRs, though, by *only* rebuilding things in the CI environment that are actually
touched by the PR. This change computes exactly what packages are changed by a PR branch and
*only* includes those packages' dependents and dependencies in the generated pipeline. Other
as-yet unbuilt packages are pruned from CI for the PR.
For `develop` pipelines, we still want to build everything to ensure that the stack works, and to ensure
that `develop` catches up with PRs. This is especially true since we do not do rebuilds for *every* commit
on `develop` -- just the most recent one after each `develop` pipeline finishes. Since we skip around,
we may end up missing builds unless we ensure that we rebuild everything.
We differentiate between `develop` and PR pipelines in `.gitlab-ci.yml` by setting
`SPACK_PRUNE_UNTOUCHED` for PRs. `develop` will still have the old behavior.
- [x] Add `SPACK_PRUNE_UNTOUCHED` variable to `spack ci`
- [x] Refactor `spack pkg` command by moving historical package checking logic to `spack.repo`
- [x] Implement pruning logic in `spack ci` to remove untouched packages
- [x] add tests
|
|
(#22097)
Add output of build- and install-time tests to info command
Enable dependencies, variants, and versions by default (i.e., provide --no*
options; add gcc to test_info_fields to increase coverage for c_names->v_names
|
|
|
|
|
|
This reverts commit 531b1c5c3dcc9bc7bec27e223608aed477e94dbd.
|
|
Adds `spack external read-cray-manifest`, which reads a json file that describes a set of package DAGs. The parsed results are stored directly in the database. A user can see these installed specs with `spack find` (like any installed spec). The easiest way to use them right now as dependencies is to run `spack spec ... ^/hash-of-external-package`.
Changes include:
* `spack external read-cray-manifest --file <path/to/file>` will add all specs described in the file to Spack's installation DB and will also install described compilers to the compilers configuration (the expected format of the file is described in this PR as well including examples of the file)
* Database records now may include an "origin" (the command added in this PR registers the origin as "external-db"). In the future, it is assumed users may want to be able to treat installs registered with this command differently (e.g. they may want to uninstall all specs added with this command)
* Hash properties are now always preserved when copying specs if the source spec is concrete
* I don't think the hashes of installed-and-concrete specs should change and this was the easiest way to handle that
* also specs that are concrete preserve their `.normal` property when copied (external specs may mention compilers that are not registered, and without this change they would fail in `normalize` when calling `validate_or_raise`)
* it might be this should only be the case if the spec was installed
- [x] Improve testing
- [x] Specifically mark DB records added with this command (so that users can do something like "uninstall all packages added with `spack read-external-db`)
* This is now possible with `spack uninstall --all --origin=external-db` (this will remove all specs added from manifest files)
- [x] Strip variants that are listed in json entries but don't actually exist for the package
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
|
|
Broaden support for execution of the test suite
on Windows.
General bug and review fixups
|
|
|
|
Setup Installer CI (#25184), (#25191)
Co-authored-by: Zack Galbreath <zack.galbreath@kitware.com>
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
|
|
* Add 'make-installer' command for Windows
* Add '--bat' arg to env activate, env deactivate and unload commands
* An equivalent script to setup-env on linux: spack_cmd.bat. This script
has a wrapper to evaluate cd, load/unload, env activate/deactivate.(#21734)
* Add spacktivate and config editor (#22049)
* spack_cmd: will find python and spack on its own. It preferentially
tries to use python on your PATH (#22414)
* Ignore Windows python installer if found (#23134)
* Bundle git in windows installer (#23597)
* Add Windows section to Getting Started document
(#23131), (#23295), (#24240)
Co-authored-by: Stephen Crowell <stephen.crowell@kitware.com>
Co-authored-by: lou.lawrence@kitware.com <lou.lawrence@kitware.com>
Co-authored-by: Betsy McPhail <betsy.mcphail@kitware.com>
Co-authored-by: Jared Popelar <jpopelar@txcorp.com>
Co-authored-by: Ben Cowan <benc@txcorp.com>
Update Installer CI
Co-authored-by: John Parent <john.parent@kitware.com>
|
|
|
|
|
|
* hdf5: mark +fortran+shared conflict for older version
This version was only activated unintentionally by silo's conflict
statement, but `@1.8.15+shared+fortran+cxx` errors out in configure:
```
CMake Error at CMakeLists.txt:814 (message):
**** Shared FORTRAN libraries are unsupported ****
```
* silo: refine hdf5 conflicts to avoid building old version
Before this, `silo+hdf5` concretized to 1.10.7 or sometimes 1.8.15. Now
I've verified it works for the following configurations:
```
silo@4.10.2 patches=7b5a1dc,952d3c9
^ hdf5@1.10.7 api=default
silo@4.10.2 patches=7b5a1dc,952d3c9,eb2a3a0
^ hdf5@1.10.8 api=v18
silo@4.10.2 patches=7b5a1dc,952d3c9,eb2a3a0
^ hdf5@1.12.1 api=v110
silo@4.11-bsd patches=eb2a3a0
^ hdf5@1.12.1 api=v110
silo@4.11-bsd patches=eb2a3a0
^ hdf5@1.10.8 api=default
silo@4.11-bsd patches=eb2a3a0
^ hdf5@1.12.1 api=default
```
and verified that the following fail:
```
silo@4.10.2 ^hdf5@1.12.1 api=default
silo@4.11 ^hdf5 api=v18
silo@4.11-bsd ^hdf5@1.13.0 api=v12
silo@4.11-bsd ^hdf5@1.13.0 api=default
```
and have updated the constraints to match. Hdf5 no longer has to be
downgraded to work with Silo.
* silo: fix dependency conflicts
* py-h5py: shorten and add comments to py-h5py hdf5 dependencies
* e4s: remove slightly outdated hdf5 requirement
* e4s: remove excessive hdf5 variant constraints
These I think are holdovers from the old concretizer.
- `hdf5_compat` can be expressed as `+hdf5 ^hdf5@1.8`
- The extra variants on hdf5 shouldn't break conduit
- axom unnecessarily restricts hdf5 version
* conduit: restore hdf5_compat flag
|
|
* Add a new test to catch exit code failure
fixes #29226
This introduces a new unit test that checks the return
code of `spack unit-test` when it is supposed to fail.
This is to prevent bugs like the one introduced in #25601
in which CI didn't catch a missing return statement.
In retrospective it seems that the shell test we have right
now all go through `tty.die` or similar code paths which
call `sys.exit(a)` explicitly. This new test instead checks
`spack unit-test` which relies on the return code from
command invocation in case of errors.
|
|
|
|
We can see what is in the bootstrap store with `spack find -b`, and you can clean it with `spack
clean -b`, but we can't do much else with it, and if there are bootstrap issues they can be hard to
debug.
We already have `spack --mock`, which allows you to swap in the mock packages from the command
line. This PR introduces `spack -b` / `spack --bootstrap`, which runs all of spack with
`ensure_bootstrap_configuration()` set. This means that you can run `spack -b find`, `spack -b
install`, `spack -b spec`, etc. to see what *would* happen with bootstrap configuration, to remove
specific bootstrap packages, etc. This will hopefully make developers' lives easier as they deal
with bootstrap packages.
This PR also uses a `nullcontext` context manager. `nullcontext` has been implemented in several
other places in Spack, and this PR consolidates them to `llnl.util.lang`, with a note that we can
delete the function if we ever reqyire a new enough Python.
- [x] introduce `spack --bootstrap` option
- [x] consolidated all `nullcontext` usages to `llnl.util.lang`
|
|
See https://github.com/spack/spack/issues/25353#issuecomment-1041868116
This commit changes the default behavior of
```
$ spack external find
```
from searching all the possible packages Spack knows about to
search only for the ones tagged as being a "build-tool".
It also introduces a `--all` option to restore the old behavior.
|
|
Since Spack does not install external packages, this commit skips them by
default when running stand-alone tests. The assumption is that such packages
have likely undergone an acceptance test process.
However, the tests can be run against installed externals using
```
% spack test run --externals ...
```
|
|
`--reuse` was previously handled individually by each command that
needed it. We are growing more concretization options, and they'll
need their own section for commands that support them.
Now there are two concretization options:
* `--reuse`: Attempt to reuse packages from installs and buildcaches.
* `--fresh`: Opposite of reuse -- traditional spack install.
To handle thes, this PR adds a `ConfigSetAction` for `argparse`, so
that you can write argparse code like this:
```
subgroup.add_argument(
'--reuse', action=ConfigSetAction, dest="concretizer:reuse",
const=True, default=None,
help='reuse installed dependencies/buildcaches when possible'
)
```
With this, you don't need to add logic to pull the argument out and
handle it; the `ConfigSetAction` just does it for you. This can probably
be used to clean up some other commands later, as well.
Code that was previously passing `reuse=True` around everywhere has
been refactored to use config, and config is set from the CLI using
a new `add_concretizer_args()` function in `spack.cmd.common.arguments`.
- [x] Add `ConfigSetAction` to simplify concretizer config on the CLI
- [x] Refactor code so that it does not pass `reuse=True` to every function.
- [x] Refactor commands to use `add_concretizer_args()` and to pass
concretizer config using the config system.
|
|
(#28871)
|
|
|
|
|
|
This reverts commit 7b76e3982f94ee952fe5d8fb0d19b389cc28228a.
|
|
|
|
* trilinos: update dependencies
Use the tribits deps to clarify some dependencies, and group some together
using `with` statements, eliminating some transitive conflict duplication.
* trilinos: Restricit cuda incompatibility
* e4s: vastly reduce number of packages in trilinos-cuda build
Not clear who the customers of cuda-enabled trilinos are, or what options
they need, or which sets of options conflict...
* e4s: remove ~wrapper from trilinos+cuda
|