summaryrefslogtreecommitdiff
path: root/lib/spack/spack/graph.py
blob: 5c8c60a3bbc7be0a91fcfb5ef4fd55060cd2b664 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)

"""Functions for graphing DAGs of dependencies.

This file contains code for graphing DAGs of software packages
(i.e. Spack specs).  There are two main functions you probably care
about:

graph_ascii() will output a colored graph of a spec in ascii format,
kind of like the graph git shows with "git log --graph", e.g.::

    o  mpileaks
    |\
    | |\
    | o |  callpath
    |/| |
    | |\|
    | |\ \
    | | |\ \
    | | | | o  adept-utils
    | |_|_|/|
    |/| | | |
    o | | | |  mpi
     / / / /
    | | o |  dyninst
    | |/| |
    |/|/| |
    | | |/
    | o |  libdwarf
    |/ /
    o |  libelf
     /
    o  boost

graph_dot() will output a graph of a spec (or multiple specs) in dot
format.

Note that ``graph_ascii`` assumes a single spec while ``graph_dot``
can take a number of specs as input.

"""
import sys

from heapq import heapify, heappop, heappush
from six import iteritems

from llnl.util.tty.color import ColorStream

from spack.spec import Spec
from spack.dependency import all_deptypes, canonical_deptype


__all__ = ['topological_sort', 'graph_ascii', 'AsciiGraph', 'graph_dot']


def topological_sort(spec, reverse=False, deptype='all'):
    """Topological sort for specs.

    Return a list of dependency specs sorted topologically.  The spec
    argument is not modified in the process.

    """
    deptype = canonical_deptype(deptype)

    if not reverse:
        parents = lambda s: s.dependents()
        children = lambda s: s.dependencies()
    else:
        parents = lambda s: s.dependencies()
        children = lambda s: s.dependents()

    # Work on a copy so this is nondestructive.
    spec = spec.copy(deps=deptype)
    nodes = spec.index(deptype=deptype)

    topo_order = []
    par = dict((name, parents(nodes[name])) for name in nodes.keys())
    remaining = [name for name in nodes.keys() if not parents(nodes[name])]
    heapify(remaining)

    while remaining:
        name = heappop(remaining)
        topo_order.append(name)

        node = nodes[name]
        for dep in children(node):
            par[dep.name].remove(node)
            if not par[dep.name]:
                heappush(remaining, dep.name)

    if any(par.get(s.name, []) for s in spec.traverse()):
        raise ValueError("Spec has cycles!")
    else:
        return topo_order


def find(seq, predicate):
    """Find index in seq for which predicate is True.

    Searches the sequence and returns the index of the element for
    which the predicate evaluates to True.  Returns -1 if the
    predicate does not evaluate to True for any element in seq.

    """
    for i, elt in enumerate(seq):
        if predicate(elt):
            return i
    return -1


# Names of different graph line states.  We record previous line
# states so that we can easily determine what to do when connecting.
states = ('node', 'collapse', 'merge-right', 'expand-right', 'back-edge')
NODE, COLLAPSE, MERGE_RIGHT, EXPAND_RIGHT, BACK_EDGE = states


class AsciiGraph(object):

    def __init__(self):
        # These can be set after initialization or after a call to
        # graph() to change behavior.
        self.node_character = 'o'
        self.debug = False
        self.indent = 0
        self.deptype = all_deptypes

        # These are colors in the order they'll be used for edges.
        # See llnl.util.tty.color for details on color characters.
        self.colors = 'rgbmcyRGBMCY'

        # Internal vars are used in the graph() function and are
        # properly initialized there.
        self._name_to_color = None    # Node name to color
        self._out = None              # Output stream
        self._frontier = None         # frontier
        self._nodes = None            # dict from name -> node
        self._prev_state = None       # State of previous line
        self._prev_index = None       # Index of expansion point of prev line

    def _indent(self):
        self._out.write(self.indent * ' ')

    def _write_edge(self, string, index, sub=0):
        """Write a colored edge to the output stream."""
        # Ignore empty frontier entries (they're just collapsed)
        if not self._frontier[index]:
            return
        name = self._frontier[index][sub]
        edge = "@%s{%s}" % (self._name_to_color[name], string)
        self._out.write(edge)

    def _connect_deps(self, i, deps, label=None):
        """Connect dependencies to existing edges in the frontier.

        ``deps`` are to be inserted at position i in the
        frontier. This routine determines whether other open edges
        should be merged with <deps> (if there are other open edges
        pointing to the same place) or whether they should just be
        inserted as a completely new open edge.

        Open edges that are not fully expanded (i.e. those that point
        at multiple places) are left intact.

        Parameters:

        label    -- optional debug label for the connection.

        Returns: True if the deps were connected to another edge
        (i.e. the frontier did not grow) and False if the deps were
        NOT already in the frontier (i.e. they were inserted and the
        frontier grew).

        """
        if len(deps) == 1 and deps in self._frontier:
            j = self._frontier.index(deps)

            # convert a right connection into a left connection
            if i < j:
                self._frontier.pop(j)
                self._frontier.insert(i, deps)
                return self._connect_deps(j, deps, label)

            collapse = True
            if self._prev_state == EXPAND_RIGHT:
                # Special case where previous line expanded and i is off by 1.
                self._back_edge_line([], j, i + 1, True,
                                     label + "-1.5 " + str((i + 1, j)))
                collapse = False

            else:
                # Previous node also expanded here, so i is off by one.
                if self._prev_state == NODE and self._prev_index < i:
                    i += 1

                if i - j > 1:
                    # We need two lines to connect if distance > 1
                    self._back_edge_line([], j,  i, True,
                                         label + "-1 " + str((i, j)))
                    collapse = False

            self._back_edge_line([j], -1, -1, collapse,
                                 label + "-2 " + str((i, j)))
            return True

        elif deps:
            self._frontier.insert(i, deps)
            return False

    def _set_state(self, state, index, label=None):
        if state not in states:
            raise ValueError("Invalid graph state!")
        self._prev_state = state
        self._prev_index = index

        if self.debug:
            self._out.write(" " * 20)
            self._out.write("%-20s" % (
                str(self._prev_state) if self._prev_state else ''))
            self._out.write("%-20s" % (str(label) if label else ''))
            self._out.write("%s" % self._frontier)

    def _back_edge_line(self, prev_ends, end, start, collapse, label=None):
        """Write part of a backwards edge in the graph.

        Writes single- or multi-line backward edges in an ascii graph.
        For example, a single line edge::

            | | | | o |
            | | | |/ /  <-- single-line edge connects two nodes.
            | | | o |

        Or a multi-line edge (requires two calls to back_edge)::

            | | | | o |
            | |_|_|/ /   <-- multi-line edge crosses vertical edges.
            |/| | | |
            o | | | |

        Also handles "pipelined" edges, where the same line contains
        parts of multiple edges::

                      o start
            | |_|_|_|/|
            |/| | |_|/| <-- this line has parts of 2 edges.
            | | |/| | |
            o   o

        Arguments:

        prev_ends -- indices in frontier of previous edges that need
                     to be finished on this line.

        end -- end of the current edge on this line.

        start -- start index of the current edge.

        collapse -- whether the graph will be collapsing (i.e. whether
                    to slant the end of the line or keep it straight)

        label -- optional debug label to print after the line.

        """
        def advance(to_pos, edges):
            """Write edges up to <to_pos>."""
            for i in range(self._pos, to_pos):
                for e in edges():
                    self._write_edge(*e)
                self._pos += 1

        flen = len(self._frontier)
        self._pos = 0
        self._indent()

        for p in prev_ends:
            advance(p,         lambda: [("| ", self._pos)])
            advance(p + 1,     lambda: [("|/", self._pos)])

        if end >= 0:
            advance(end + 1,   lambda: [("| ", self._pos)])
            advance(start - 1, lambda: [("|",  self._pos), ("_", end)])
        else:
            advance(start - 1, lambda: [("| ", self._pos)])

        if start >= 0:
            advance(start,     lambda: [("|",  self._pos), ("/", end)])

        if collapse:
            advance(flen,      lambda: [(" /", self._pos)])
        else:
            advance(flen,      lambda: [("| ", self._pos)])

        self._set_state(BACK_EDGE, end, label)
        self._out.write("\n")

    def _node_line(self, index, name):
        """Writes a line with a node at index."""
        self._indent()
        for c in range(index):
            self._write_edge("| ", c)

        self._out.write("%s " % self.node_character)

        for c in range(index + 1, len(self._frontier)):
            self._write_edge("| ", c)

        self._out.write(" %s" % name)
        self._set_state(NODE, index)
        self._out.write("\n")

    def _collapse_line(self, index):
        """Write a collapsing line after a node was added at index."""
        self._indent()
        for c in range(index):
            self._write_edge("| ", c)
        for c in range(index, len(self._frontier)):
            self._write_edge(" /", c)

        self._set_state(COLLAPSE, index)
        self._out.write("\n")

    def _merge_right_line(self, index):
        """Edge at index is same as edge to right.  Merge directly with '\'"""
        self._indent()
        for c in range(index):
            self._write_edge("| ", c)
        self._write_edge("|", index)
        self._write_edge("\\", index + 1)
        for c in range(index + 1, len(self._frontier)):
            self._write_edge("| ", c)

        self._set_state(MERGE_RIGHT, index)
        self._out.write("\n")

    def _expand_right_line(self, index):
        self._indent()
        for c in range(index):
            self._write_edge("| ", c)

        self._write_edge("|", index)
        self._write_edge("\\", index + 1)

        for c in range(index + 2, len(self._frontier)):
            self._write_edge(" \\", c)

        self._set_state(EXPAND_RIGHT, index)
        self._out.write("\n")

    def write(self, spec, color=None, out=None):
        """Write out an ascii graph of the provided spec.

        Arguments:
        spec -- spec to graph.  This only handles one spec at a time.

        Optional arguments:

        out -- file object to write out to (default is sys.stdout)

        color -- whether to write in color.  Default is to autodetect
                 based on output file.

        """
        if out is None:
            out = sys.stdout

        if color is None:
            color = out.isatty()

        self._out = ColorStream(out, color=color)

        # We'll traverse the spec in topo order as we graph it.
        topo_order = topological_sort(spec, reverse=True, deptype=self.deptype)

        # Work on a copy to be nondestructive
        spec = spec.copy()
        self._nodes = spec.index()

        # Colors associated with each node in the DAG.
        # Edges are colored by the node they point to.
        self._name_to_color = dict((name, self.colors[i % len(self.colors)])
                                   for i, name in enumerate(topo_order))

        # Frontier tracks open edges of the graph as it's written out.
        self._frontier = [[spec.name]]
        while self._frontier:
            # Find an unexpanded part of frontier
            i = find(self._frontier, lambda f: len(f) > 1)

            if i >= 0:
                # Expand frontier until there are enough columns for all
                # children.

                # Figure out how many back connections there are and
                # sort them so we do them in order
                back = []
                for d in self._frontier[i]:
                    b = find(self._frontier[:i], lambda f: f == [d])
                    if b != -1:
                        back.append((b, d))

                # Do all back connections in sorted order so we can
                # pipeline them and save space.
                if back:
                    back.sort()
                    prev_ends = []
                    collapse_l1 = False
                    for j, (b, d) in enumerate(back):
                        self._frontier[i].remove(d)
                        if i - b > 1:
                            collapse_l1 = any(not e for e in self._frontier)
                            self._back_edge_line(
                                prev_ends, b, i, collapse_l1, 'left-1')
                            del prev_ends[:]
                        prev_ends.append(b)

                    # Check whether we did ALL the deps as back edges,
                    # in which case we're done.
                    pop = not self._frontier[i]
                    collapse_l2 = pop
                    if collapse_l1:
                        collapse_l2 = False
                    if pop:
                        self._frontier.pop(i)
                    self._back_edge_line(
                        prev_ends, -1, -1, collapse_l2, 'left-2')

                elif len(self._frontier[i]) > 1:
                    # Expand forward after doing all back connections

                    if (i + 1 < len(self._frontier) and
                            len(self._frontier[i + 1]) == 1 and
                            self._frontier[i + 1][0] in self._frontier[i]):
                        # We need to connect to the element to the right.
                        # Keep lines straight by connecting directly and
                        # avoiding unnecessary expand/contract.
                        name = self._frontier[i + 1][0]
                        self._frontier[i].remove(name)
                        self._merge_right_line(i)

                    else:
                        # Just allow the expansion here.
                        name = self._frontier[i].pop(0)
                        deps = [name]
                        self._frontier.insert(i, deps)
                        self._expand_right_line(i)

                        self._frontier.pop(i)
                        self._connect_deps(i, deps, "post-expand")

                # Handle any remaining back edges to the right
                j = i + 1
                while j < len(self._frontier):
                    deps = self._frontier.pop(j)
                    if not self._connect_deps(j, deps, "back-from-right"):
                        j += 1

            else:
                # Nothing to expand; add dependencies for a node.
                name = topo_order.pop()
                node = self._nodes[name]

                # Find the named node in the frontier and draw it.
                i = find(self._frontier, lambda f: name in f)
                self._node_line(i, name)

                # Replace node with its dependencies
                self._frontier.pop(i)
                deps = node.dependencies(self.deptype)
                if deps:
                    deps = sorted((d.name for d in deps), reverse=True)
                    self._connect_deps(i, deps, "new-deps")  # anywhere.

                elif self._frontier:
                    self._collapse_line(i)


def graph_ascii(spec, node='o', out=None, debug=False,
                indent=0, color=None, deptype='all'):
    graph = AsciiGraph()
    graph.debug = debug
    graph.indent = indent
    graph.node_character = node
    if deptype:
        graph.deptype = canonical_deptype(deptype)

    graph.write(spec, color=color, out=out)


def graph_dot(specs, deptype='all', static=False, out=None):
    """Generate a graph in dot format of all provided specs.

    Print out a dot formatted graph of all the dependencies between
    package.  Output can be passed to graphviz, e.g.:

        spack graph --dot qt | dot -Tpdf > spack-graph.pdf

    """
    if out is None:
        out = sys.stdout
    deptype = canonical_deptype(deptype)

    out.write('digraph G {\n')
    out.write('  labelloc = "b"\n')
    out.write('  rankdir = "TB"\n')
    out.write('  ranksep = "5"\n')
    out.write('node[\n')
    out.write('     fontname=Monaco,\n')
    out.write('     penwidth=2,\n')
    out.write('     fontsize=12,\n')
    out.write('     margin=.1,\n')
    out.write('     shape=box,\n')
    out.write('     fillcolor=lightblue,\n')
    out.write('     style="rounded,filled"]\n')

    out.write('\n')

    def q(string):
        return '"%s"' % string

    if not specs:
        raise ValueError("Must provide specs ot graph_dot")

    # Static graph includes anything a package COULD depend on.
    if static:
        names = set.union(*[
            s.package.possible_dependencies(expand_virtuals=False)
            for s in specs])
        specs = [Spec(name) for name in names]

    labeled = set()

    def label(key, label):
        if key not in labeled:
            out.write('  "%s" [label="%s"]\n' % (key, label))
            labeled.add(key)

    deps = set()
    for spec in specs:
        if static:
            out.write('  "%s" [label="%s"]\n' % (spec.name, spec.name))

            # Skip virtual specs (we'll find out about them from concrete ones.
            if spec.virtual:
                continue

            # Add edges for each depends_on in the package.
            for dep_name, dep in iteritems(spec.package.dependencies):
                deps.add((spec.name, dep_name))

            # If the package provides something, add an edge for that.
            for provider in set(s.name for s in spec.package.provided):
                deps.add((provider, spec.name))

        else:
            def key_label(s):
                return s.dag_hash(), "%s/%s" % (s.name, s.dag_hash(7))

            for s in spec.traverse(deptype=deptype):
                skey, slabel = key_label(s)
                out.write('  "%s" [label="%s"]\n' % (skey, slabel))

                for d in s.dependencies(deptype=deptype):
                    dkey, _ = key_label(d)
                    deps.add((skey, dkey))

    out.write('\n')

    for pair in deps:
        out.write('  "%s" -> "%s"\n' % pair)
    out.write('}\n')