summaryrefslogblamecommitdiff
path: root/src/math/fma.c
blob: 7076d4b9308fbf9b7a0c60801b347c1c5e6c4e40 (plain) (tree)
























                                                                               

















                                                                               
                                                                                  












                                                         
              
                             





                                                                         


                     
                                                                                      





                                                     
                                                                                      












































                                                        
                                                                     



















                                                                             


























                                                                             























































































                                                                             
                                     




























































                                                                             



                                         



                                   












                                                                         
                 
                                          

                   

                                                    
      
                                 
                                           
                                   
                    




                                                         

                  




                                                                 


                               



                                                                
      


                                       
                                         
























                                                                            
                                                           








                                                                              
                                                  



                                         
                                                  
            
                                                              
 
      
#include <fenv.h>
#include "libm.h"

#if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
union ld80 {
	long double x;
	struct {
		uint64_t m;
		uint16_t e : 15;
		uint16_t s : 1;
		uint16_t pad;
	} bits;
};

/* exact add, assumes exponent_x >= exponent_y */
static void add(long double *hi, long double *lo, long double x, long double y)
{
	long double r;

	r = x + y;
	*hi = r;
	r -= x;
	*lo = y - r;
}

/* exact mul, assumes no over/underflow */
static void mul(long double *hi, long double *lo, long double x, long double y)
{
	static const long double c = 1.0 + 0x1p32L;
	long double cx, xh, xl, cy, yh, yl;

	cx = c*x;
	xh = (x - cx) + cx;
	xl = x - xh;
	cy = c*y;
	yh = (y - cy) + cy;
	yl = y - yh;
	*hi = x*y;
	*lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
}

/*
assume (long double)(hi+lo) == hi
return an adjusted hi so that rounding it to double (or less) precision is correct
*/
static long double adjust(long double hi, long double lo)
{
	union ld80 uhi, ulo;

	if (lo == 0)
		return hi;
	uhi.x = hi;
	if (uhi.bits.m & 0x3ff)
		return hi;
	ulo.x = lo;
	if (uhi.bits.s == ulo.bits.s)
		uhi.bits.m++;
	else {
		uhi.bits.m--;
		/* handle underflow and take care of ld80 implicit msb */
		if (uhi.bits.m == (uint64_t)-1/2) {
			uhi.bits.m *= 2;
			uhi.bits.e--;
		}
	}
	return uhi.x;
}

/* adjusted add so the result is correct when rounded to double (or less) precision */
static long double dadd(long double x, long double y)
{
	add(&x, &y, x, y);
	return adjust(x, y);
}

/* adjusted mul so the result is correct when rounded to double (or less) precision */
static long double dmul(long double x, long double y)
{
	mul(&x, &y, x, y);
	return adjust(x, y);
}

static int getexp(long double x)
{
	union ld80 u;
	u.x = x;
	return u.bits.e;
}

double fma(double x, double y, double z)
{
	long double hi, lo1, lo2, xy;
	int round, ez, exy;

	/* handle +-inf,nan */
	if (!isfinite(x) || !isfinite(y))
		return x*y + z;
	if (!isfinite(z))
		return z;
	/* handle +-0 */
	if (x == 0.0 || y == 0.0)
		return x*y + z;
	round = fegetround();
	if (z == 0.0) {
		if (round == FE_TONEAREST)
			return dmul(x, y);
		return x*y;
	}

	/* exact mul and add require nearest rounding */
	/* spurious inexact exceptions may be raised */
	fesetround(FE_TONEAREST);
	mul(&xy, &lo1, x, y);
	exy = getexp(xy);
	ez = getexp(z);
	if (ez > exy) {
		add(&hi, &lo2, z, xy);
	} else if (ez > exy - 12) {
		add(&hi, &lo2, xy, z);
		if (hi == 0) {
			fesetround(round);
			/* make sure that the sign of 0 is correct */
			return (xy + z) + lo1;
		}
	} else {
		/*
		ez <= exy - 12
		the 12 extra bits (1guard, 11round+sticky) are needed so with
			lo = dadd(lo1, lo2)
		elo <= ehi - 11, and we use the last 10 bits in adjust so
			dadd(hi, lo)
		gives correct result when rounded to double
		*/
		hi = xy;
		lo2 = z;
	}
	fesetround(round);
	if (round == FE_TONEAREST)
		return dadd(hi, dadd(lo1, lo2));
	return hi + (lo1 + lo2);
}
#else
/* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
/*-
 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * A struct dd represents a floating-point number with twice the precision
 * of a double.  We maintain the invariant that "hi" stores the 53 high-order
 * bits of the result.
 */
struct dd {
	double hi;
	double lo;
};

/*
 * Compute a+b exactly, returning the exact result in a struct dd.  We assume
 * that both a and b are finite, but make no assumptions about their relative
 * magnitudes.
 */
static inline struct dd dd_add(double a, double b)
{
	struct dd ret;
	double s;

	ret.hi = a + b;
	s = ret.hi - a;
	ret.lo = (a - (ret.hi - s)) + (b - s);
	return (ret);
}

/*
 * Compute a+b, with a small tweak:  The least significant bit of the
 * result is adjusted into a sticky bit summarizing all the bits that
 * were lost to rounding.  This adjustment negates the effects of double
 * rounding when the result is added to another number with a higher
 * exponent.  For an explanation of round and sticky bits, see any reference
 * on FPU design, e.g.,
 *
 *     J. Coonen.  An Implementation Guide to a Proposed Standard for
 *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
 */
static inline double add_adjusted(double a, double b)
{
	struct dd sum;
	uint64_t hibits, lobits;

	sum = dd_add(a, b);
	if (sum.lo != 0) {
		EXTRACT_WORD64(hibits, sum.hi);
		if ((hibits & 1) == 0) {
			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
			EXTRACT_WORD64(lobits, sum.lo);
			hibits += 1 - ((hibits ^ lobits) >> 62);
			INSERT_WORD64(sum.hi, hibits);
		}
	}
	return (sum.hi);
}

/*
 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
 * that the result will be subnormal, and care is taken to ensure that
 * double rounding does not occur.
 */
static inline double add_and_denormalize(double a, double b, int scale)
{
	struct dd sum;
	uint64_t hibits, lobits;
	int bits_lost;

	sum = dd_add(a, b);

	/*
	 * If we are losing at least two bits of accuracy to denormalization,
	 * then the first lost bit becomes a round bit, and we adjust the
	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
	 * break any ties in the correct direction.
	 *
	 * If we are losing only one bit to denormalization, however, we must
	 * break the ties manually.
	 */
	if (sum.lo != 0) {
		EXTRACT_WORD64(hibits, sum.hi);
		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
		if (bits_lost != 1 ^ (int)(hibits & 1)) {
			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
			EXTRACT_WORD64(lobits, sum.lo);
			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
			INSERT_WORD64(sum.hi, hibits);
		}
	}
	return scalbn(sum.hi, scale);
}

/*
 * Compute a*b exactly, returning the exact result in a struct dd.  We assume
 * that both a and b are normalized, so no underflow or overflow will occur.
 * The current rounding mode must be round-to-nearest.
 */
static inline struct dd dd_mul(double a, double b)
{
	static const double split = 0x1p27 + 1.0;
	struct dd ret;
	double ha, hb, la, lb, p, q;

	p = a * split;
	ha = a - p;
	ha += p;
	la = a - ha;

	p = b * split;
	hb = b - p;
	hb += p;
	lb = b - hb;

	p = ha * hb;
	q = ha * lb + la * hb;

	ret.hi = p + q;
	ret.lo = p - ret.hi + q + la * lb;
	return (ret);
}

/*
 * Fused multiply-add: Compute x * y + z with a single rounding error.
 *
 * We use scaling to avoid overflow/underflow, along with the
 * canonical precision-doubling technique adapted from:
 *
 *      Dekker, T.  A Floating-Point Technique for Extending the
 *      Available Precision.  Numer. Math. 18, 224-242 (1971).
 *
 * This algorithm is sensitive to the rounding precision.  FPUs such
 * as the i387 must be set in double-precision mode if variables are
 * to be stored in FP registers in order to avoid incorrect results.
 * This is the default on FreeBSD, but not on many other systems.
 *
 * Hardware instructions should be used on architectures that support it,
 * since this implementation will likely be several times slower.
 */
double fma(double x, double y, double z)
{
	double xs, ys, zs, adj;
	struct dd xy, r;
	int oround;
	int ex, ey, ez;
	int spread;

	/*
	 * Handle special cases. The order of operations and the particular
	 * return values here are crucial in handling special cases involving
	 * infinities, NaNs, overflows, and signed zeroes correctly.
	 */
	if (!isfinite(x) || !isfinite(y))
		return (x * y + z);
	if (!isfinite(z))
		return (z);
	if (x == 0.0 || y == 0.0)
		return (x * y + z);
	if (z == 0.0)
		return (x * y);

	xs = frexp(x, &ex);
	ys = frexp(y, &ey);
	zs = frexp(z, &ez);
	oround = fegetround();
	spread = ex + ey - ez;

	/*
	 * If x * y and z are many orders of magnitude apart, the scaling
	 * will overflow, so we handle these cases specially.  Rounding
	 * modes other than FE_TONEAREST are painful.
	 */
	if (spread < -DBL_MANT_DIG) {
#ifdef FE_INEXACT
		feraiseexcept(FE_INEXACT);
#endif
#ifdef FE_UNDERFLOW
		if (!isnormal(z))
			feraiseexcept(FE_UNDERFLOW);
#endif
		switch (oround) {
		default: /* FE_TONEAREST */
			return (z);
#ifdef FE_TOWARDZERO
		case FE_TOWARDZERO:
			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
				return (z);
			else
				return (nextafter(z, 0));
#endif
#ifdef FE_DOWNWARD
		case FE_DOWNWARD:
			if (x > 0.0 ^ y < 0.0)
				return (z);
			else
				return (nextafter(z, -INFINITY));
#endif
#ifdef FE_UPWARD
		case FE_UPWARD:
			if (x > 0.0 ^ y < 0.0)
				return (nextafter(z, INFINITY));
			else
				return (z);
#endif
		}
	}
	if (spread <= DBL_MANT_DIG * 2)
		zs = scalbn(zs, -spread);
	else
		zs = copysign(DBL_MIN, zs);

	fesetround(FE_TONEAREST);

	/*
	 * Basic approach for round-to-nearest:
	 *
	 *     (xy.hi, xy.lo) = x * y           (exact)
	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
	 *     result = r.hi + adj              (correctly rounded)
	 */
	xy = dd_mul(xs, ys);
	r = dd_add(xy.hi, zs);

	spread = ex + ey;

	if (r.hi == 0.0) {
		/*
		 * When the addends cancel to 0, ensure that the result has
		 * the correct sign.
		 */
		fesetround(oround);
		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
		return xy.hi + vzs + scalbn(xy.lo, spread);
	}

	if (oround != FE_TONEAREST) {
		/*
		 * There is no need to worry about double rounding in directed
		 * rounding modes.
		 */
		fesetround(oround);
		adj = r.lo + xy.lo;
		return scalbn(r.hi + adj, spread);
	}

	adj = add_adjusted(r.lo, xy.lo);
	if (spread + ilogb(r.hi) > -1023)
		return scalbn(r.hi + adj, spread);
	else
		return add_and_denormalize(r.hi, adj, spread);
}
#endif