/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* log(x)
* Return the logrithm of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Remez algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k*ln2 + log(1+f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log(x) is NaN with signal if x < 0 (including -INF) ;
* log(+INF) is +INF; log(0) is -INF with signal;
* log(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "libm.h"
static const double
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
static const double zero = 0.0;
double log(double x)
{
double hfsq,f,s,z,R,w,t1,t2,dk;
int32_t k,hx,i,j;
uint32_t lx;
EXTRACT_WORDS(hx, lx, x);
k = 0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (((hx&0x7fffffff)|lx) == 0)
return -two54/zero; /* log(+-0)=-inf */
if (hx < 0)
return (x-x)/zero; /* log(-#) = NaN */
/* subnormal number, scale up x */
k -= 54;
x *= two54;
GET_HIGH_WORD(hx,x);
}
if (hx >= 0x7ff00000)
return x+x;
k += (hx>>20) - 1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
SET_HIGH_WORD(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */
k += i>>20;
f = x - 1.0;
if ((0x000fffff&(2+hx)) < 3) { /* -2**-20 <= f < 2**-20 */
if (f == zero) {
if (k == 0) {
return zero;
}
dk = (double)k;
return dk*ln2_hi + dk*ln2_lo;
}
R = f*f*(0.5-0.33333333333333333*f);
if (k == 0)
return f - R;
dk = (double)k;
return dk*ln2_hi - ((R-dk*ln2_lo)-f);
}
s = f/(2.0+f);
dk = (double)k;
z = s*s;
i = hx - 0x6147a;
w = z*z;
j = 0x6b851 - hx;
t1 = w*(Lg2+w*(Lg4+w*Lg6));
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2 + t1;
if (i > 0) {
hfsq = 0.5*f*f;
if (k == 0)
return f - (hfsq-s*(hfsq+R));
return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
} else {
if (k == 0)
return f - s*(f-R);
return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f);
}
}