blob: e4c2237caa2eb51c08626731fd315fba21f92618 (
plain) (
tree)
|
|
/*
* Single-precision log function.
*
* Copyright (c) 2017-2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "logf_data.h"
/*
LOGF_TABLE_BITS = 4
LOGF_POLY_ORDER = 4
ULP error: 0.818 (nearest rounding.)
Relative error: 1.957 * 2^-26 (before rounding.)
*/
#define T __logf_data.tab
#define A __logf_data.poly
#define Ln2 __logf_data.ln2
#define N (1 << LOGF_TABLE_BITS)
#define OFF 0x3f330000
float logf(float x)
{
double_t z, r, r2, y, y0, invc, logc;
uint32_t ix, iz, tmp;
int k, i;
ix = asuint(x);
/* Fix sign of zero with downward rounding when x==1. */
if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
return 0;
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
/* x < 0x1p-126 or inf or nan. */
if (ix * 2 == 0)
return __math_divzerof(1);
if (ix == 0x7f800000) /* log(inf) == inf. */
return x;
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
return __math_invalidf(x);
/* x is subnormal, normalize it. */
ix = asuint(x * 0x1p23f);
ix -= 23 << 23;
}
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (23 - LOGF_TABLE_BITS)) % N;
k = (int32_t)tmp >> 23; /* arithmetic shift */
iz = ix - (tmp & 0xff800000);
invc = T[i].invc;
logc = T[i].logc;
z = (double_t)asfloat(iz);
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */
r = z * invc - 1;
y0 = logc + (double_t)k * Ln2;
/* Pipelined polynomial evaluation to approximate log1p(r). */
r2 = r * r;
y = A[1] * r + A[2];
y = A[0] * r2 + y;
y = y * r2 + (y0 + r);
return eval_as_float(y);
}
|