diff options
author | Szabolcs Nagy <nsz@port70.net> | 2013-01-01 21:59:46 +0100 |
---|---|---|
committer | Szabolcs Nagy <nsz@port70.net> | 2013-01-01 21:59:46 +0100 |
commit | 697acde67e0da4d73b46445ed536fe9923d515c7 (patch) | |
tree | becd1024b588787ad27232af7152a6139baf4a21 | |
parent | d18a410bbf259e5fee9fb8b4b0335ec64991d5db (diff) | |
download | musl-697acde67e0da4d73b46445ed536fe9923d515c7.tar.gz musl-697acde67e0da4d73b46445ed536fe9923d515c7.tar.bz2 musl-697acde67e0da4d73b46445ed536fe9923d515c7.tar.xz musl-697acde67e0da4d73b46445ed536fe9923d515c7.zip |
math: bessel cleanup (j0.c and j0f.c)
a common code path in j0 and y0 was factored out so the resulting
object code is smaller
unsigned int arithmetics is used for bit manipulation
the logic of j0 got a bit simplified (x < 1 case was handled
separately with a bit higher precision than now, but there are large
errors in other domains anyway so that branch has been removed)
some threshold values were adjusted in j0f and y0f
-rw-r--r-- | src/math/j0.c | 193 | ||||
-rw-r--r-- | src/math/j0f.c | 171 |
2 files changed, 161 insertions, 203 deletions
diff --git a/src/math/j0.c b/src/math/j0.c index 986968e8..b281e136 100644 --- a/src/math/j0.c +++ b/src/math/j0.c @@ -59,10 +59,46 @@ static double pzero(double), qzero(double); static const double -huge = 1e300, invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ -tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ +tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */ + +/* common method when |x|>=2 */ +static double common(uint32_t ix, double x, int y0) +{ + double s,c,ss,cc,z; + + /* + * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4)) + * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4)) + * + * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2) + * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2) + * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) + */ + s = sin(x); + c = cos(x); + if (y0) + c = -c; + cc = s+c; + /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */ + if (ix < 0x7fe00000) { + ss = s-c; + z = -cos(2*x); + if (s*c < 0) + cc = z/ss; + else + ss = z/cc; + if (ix < 0x48000000) { + if (y0) + ss = -ss; + cc = pzero(x)*cc-qzero(x)*ss; + } + } + return invsqrtpi*cc/sqrt(x); +} + /* R0/S0 on [0, 2.00] */ +static const double R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ @@ -74,56 +110,37 @@ S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ double j0(double x) { - double z, s,c,ss,cc,r,u,v; - int32_t hx,ix; + double z,r,s; + uint32_t ix; - GET_HIGH_WORD(hx, x); - ix = hx & 0x7fffffff; + GET_HIGH_WORD(ix, x); + ix &= 0x7fffffff; + + /* j0(+-inf)=0, j0(nan)=nan */ if (ix >= 0x7ff00000) - return 1.0/(x*x); + return 1/(x*x); x = fabs(x); - if (ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(x); - c = cos(x); - ss = s-c; - cc = s+c; - if (ix < 0x7fe00000) { /* make sure x+x does not overflow */ - z = -cos(x+x); - if (s*c < 0.0) - cc = z/ss; - else - ss = z/cc; - } - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if (ix > 0x48000000) - z = (invsqrtpi*cc)/sqrt(x); - else { - u = pzero(x); - v = qzero(x); - z = invsqrtpi*(u*cc-v*ss)/sqrt(x); - } - return z; - } - if (ix < 0x3f200000) { /* |x| < 2**-13 */ - /* raise inexact if x != 0 */ - if (huge+x > 1.0) { - if (ix < 0x3e400000) /* |x| < 2**-27 */ - return 1.0; - return 1.0 - 0.25*x*x; - } + + if (ix >= 0x40000000) { /* |x| >= 2 */ + /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */ + return common(ix,x,0); } - z = x*x; - r = z*(R02+z*(R03+z*(R04+z*R05))); - s = 1.0+z*(S01+z*(S02+z*(S03+z*S04))); - if (ix < 0x3FF00000) { /* |x| < 1.00 */ - return 1.0 + z*(-0.25+(r/s)); - } else { - u = 0.5*x; - return (1.0+u)*(1.0-u) + z*(r/s); + + /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */ + if (ix >= 0x3f200000) { /* |x| >= 2**-13 */ + /* up to 4ulp error close to 2 */ + z = x*x; + r = z*(R02+z*(R03+z*(R04+z*R05))); + s = 1+z*(S01+z*(S02+z*(S03+z*S04))); + return (1+x/2)*(1-x/2) + z*(r/s); } + + /* 1 - x*x/4 */ + /* prevent underflow */ + /* inexact should be raised when x!=0, this is not done correctly */ + if (ix >= 0x38000000) /* |x| >= 2**-127 */ + x = 0.25*x*x; + return 1 - x; } static const double @@ -141,61 +158,33 @@ v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ double y0(double x) { - double z,s,c,ss,cc,u,v; - int32_t hx,ix,lx; + double z,u,v; + uint32_t ix,lx; - EXTRACT_WORDS(hx, lx, x); - ix = 0x7fffffff & hx; - /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ + EXTRACT_WORDS(ix, lx, x); + + /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */ + if ((ix<<1 | lx) == 0) + return -1/0.0; + if (ix>>31) + return 0/0.0; if (ix >= 0x7ff00000) - return 1.0/(x+x*x); - if ((ix|lx) == 0) - return -1.0/0.0; - if (hx < 0) - return 0.0/0.0; - if (ix >= 0x40000000) { /* |x| >= 2.0 */ - /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - * where x0 = x-pi/4 - * Better formula: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) + cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - s = sin(x); - c = cos(x); - ss = s-c; - cc = s+c; - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if (ix < 0x7fe00000) { /* make sure x+x does not overflow */ - z = -cos(x+x); - if (s*c < 0.0) - cc = z/ss; - else - ss = z/cc; - } - if (ix > 0x48000000) - z = (invsqrtpi*ss)/sqrt(x); - else { - u = pzero(x); - v = qzero(x); - z = invsqrtpi*(u*ss+v*cc)/sqrt(x); - } - return z; + return 1/x; + + if (ix >= 0x40000000) { /* x >= 2 */ + /* large ulp errors near zeros: 3.958, 7.086,.. */ + return common(ix,x,1); } - if (ix <= 0x3e400000) { /* x < 2**-27 */ - return u00 + tpi*log(x); + + /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */ + if (ix >= 0x3e400000) { /* x >= 2**-27 */ + /* large ulp error near the first zero, x ~= 0.89 */ + z = x*x; + u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); + v = 1.0+z*(v01+z*(v02+z*(v03+z*v04))); + return u/v + tpi*(j0(x)*log(x)); } - z = x*x; - u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); - v = 1.0+z*(v01+z*(v02+z*(v03+z*v04))); - return u/v + tpi*(j0(x)*log(x)); + return u00 + tpi*log(x); } /* The asymptotic expansions of pzero is @@ -275,14 +264,14 @@ static double pzero(double x) { const double *p,*q; double z,r,s; - int32_t ix; + uint32_t ix; GET_HIGH_WORD(ix, x); ix &= 0x7fffffff; if (ix >= 0x40200000){p = pR8; q = pS8;} else if (ix >= 0x40122E8B){p = pR5; q = pS5;} else if (ix >= 0x4006DB6D){p = pR3; q = pS3;} - else if (ix >= 0x40000000){p = pR2; q = pS2;} + else /*ix >= 0x40000000*/ {p = pR2; q = pS2;} z = 1.0/(x*x); r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); @@ -371,14 +360,14 @@ static double qzero(double x) { const double *p,*q; double s,r,z; - int32_t ix; + uint32_t ix; GET_HIGH_WORD(ix, x); ix &= 0x7fffffff; if (ix >= 0x40200000){p = qR8; q = qS8;} else if (ix >= 0x40122E8B){p = qR5; q = qS5;} else if (ix >= 0x4006DB6D){p = qR3; q = qS3;} - else if (ix >= 0x40000000){p = qR2; q = qS2;} + else /*ix >= 0x40000000*/ {p = qR2; q = qS2;} z = 1.0/(x*x); r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); diff --git a/src/math/j0f.c b/src/math/j0f.c index 2ee2824b..79bab62a 100644 --- a/src/math/j0f.c +++ b/src/math/j0f.c @@ -18,10 +18,39 @@ static float pzerof(float), qzerof(float); static const float -huge = 1e30, invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */ -tpi = 6.3661974669e-01, /* 0x3f22f983 */ +tpi = 6.3661974669e-01; /* 0x3f22f983 */ + +static float common(uint32_t ix, float x, int y0) +{ + float z,s,c,ss,cc; + /* + * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) + * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) + */ + s = sinf(x); + c = cosf(x); + if (y0) + c = -c; + cc = s+c; + if (ix < 0x7f000000) { + ss = s-c; + z = -cosf(2*x); + if (s*c < 0) + cc = z/ss; + else + ss = z/cc; + if (ix < 0x58800000) { + if (y0) + ss = -ss; + cc = pzerof(x)*cc-qzerof(x)*ss; + } + } + return invsqrtpi*cc/sqrtf(x); +} + /* R0/S0 on [0, 2.00] */ +static const float R02 = 1.5625000000e-02, /* 0x3c800000 */ R03 = -1.8997929874e-04, /* 0xb947352e */ R04 = 1.8295404516e-06, /* 0x35f58e88 */ @@ -33,56 +62,29 @@ S04 = 1.1661400734e-09; /* 0x30a045e8 */ float j0f(float x) { - float z, s,c,ss,cc,r,u,v; - int32_t hx,ix; + float z,r,s; + uint32_t ix; - GET_FLOAT_WORD(hx, x); - ix = hx & 0x7fffffff; + GET_FLOAT_WORD(ix, x); + ix &= 0x7fffffff; if (ix >= 0x7f800000) - return 1.0f/(x*x); + return 1/(x*x); x = fabsf(x); - if (ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(x); - c = cosf(x); - ss = s-c; - cc = s+c; - if (ix < 0x7f000000) { /* make sure x+x does not overflow */ - z = -cosf(x+x); - if (s*c < 0.0f) - cc = z/ss; - else - ss = z/cc; - } - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if (ix > 0x80000000) - z = (invsqrtpi*cc)/sqrtf(x); - else { - u = pzerof(x); - v = qzerof(x); - z = invsqrtpi*(u*cc-v*ss)/sqrtf(x); - } - return z; - } - if (ix < 0x39000000) { /* |x| < 2**-13 */ - /* raise inexact if x != 0 */ - if (huge+x > 1.0f) { - if (ix < 0x32000000) /* |x| < 2**-27 */ - return 1.0f; - return 1.0f - 0.25f*x*x; - } + + if (ix >= 0x40000000) { /* |x| >= 2 */ + /* large ulp error near zeros */ + return common(ix, x, 0); } - z = x*x; - r = z*(R02+z*(R03+z*(R04+z*R05))); - s = 1.0f+z*(S01+z*(S02+z*(S03+z*S04))); - if(ix < 0x3F800000) { /* |x| < 1.00 */ - return 1.0f + z*(-0.25f + (r/s)); - } else { - u = 0.5f*x; - return (1.0f+u)*(1.0f-u) + z*(r/s); + if (ix >= 0x3a000000) { /* |x| >= 2**-11 */ + /* up to 4ulp error near 2 */ + z = x*x; + r = z*(R02+z*(R03+z*(R04+z*R05))); + s = 1+z*(S01+z*(S02+z*(S03+z*S04))); + return (1+x/2)*(1-x/2) + z*(r/s); } + if (ix >= 0x21800000) /* |x| >= 2**-60 */ + x = 0.25f*x*x; + return 1 - x; } static const float @@ -100,61 +102,28 @@ v04 = 4.4111031494e-10; /* 0x2ff280c2 */ float y0f(float x) { - float z,s,c,ss,cc,u,v; - int32_t hx,ix; + float z,u,v; + uint32_t ix; - GET_FLOAT_WORD(hx, x); - ix = 0x7fffffff & hx; - /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ + GET_FLOAT_WORD(ix, x); + if ((ix & 0x7fffffff) == 0) + return -1/0.0f; + if (ix>>31) + return 0/0.0f; if (ix >= 0x7f800000) - return 1.0f/(x+x*x); - if (ix == 0) - return -1.0f/0.0f; - if (hx < 0) - return 0.0f/0.0f; + return 1/x; if (ix >= 0x40000000) { /* |x| >= 2.0 */ - /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - * where x0 = x-pi/4 - * Better formula: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) + cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - s = sinf(x); - c = cosf(x); - ss = s-c; - cc = s+c; - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if (ix < 0x7f000000) { /* make sure x+x not overflow */ - z = -cosf(x+x); - if (s*c < 0.0f) - cc = z/ss; - else - ss = z/cc; - } - if (ix > 0x80000000) - z = (invsqrtpi*ss)/sqrtf(x); - else { - u = pzerof(x); - v = qzerof(x); - z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); - } - return z; + /* large ulp error near zeros */ + return common(ix,x,1); } - if (ix <= 0x32000000) { /* x < 2**-27 */ - return u00 + tpi*logf(x); + if (ix >= 0x39000000) { /* x >= 2**-13 */ + /* large ulp error at x ~= 0.89 */ + z = x*x; + u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); + v = 1+z*(v01+z*(v02+z*(v03+z*v04))); + return u/v + tpi*(j0f(x)*logf(x)); } - z = x*x; - u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); - v = 1.0f+z*(v01+z*(v02+z*(v03+z*v04))); - return u/v + tpi*(j0f(x)*logf(x)); + return u00 + tpi*logf(x); } /* The asymptotic expansions of pzero is @@ -233,14 +202,14 @@ static float pzerof(float x) { const float *p,*q; float z,r,s; - int32_t ix; + uint32_t ix; GET_FLOAT_WORD(ix, x); ix &= 0x7fffffff; if (ix >= 0x41000000){p = pR8; q = pS8;} else if (ix >= 0x40f71c58){p = pR5; q = pS5;} else if (ix >= 0x4036db68){p = pR3; q = pS3;} - else if (ix >= 0x40000000){p = pR2; q = pS2;} + else /*ix >= 0x40000000*/ {p = pR2; q = pS2;} z = 1.0f/(x*x); r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); @@ -329,14 +298,14 @@ static float qzerof(float x) { const float *p,*q; float s,r,z; - int32_t ix; + uint32_t ix; GET_FLOAT_WORD(ix, x); ix &= 0x7fffffff; if (ix >= 0x41000000){p = qR8; q = qS8;} else if (ix >= 0x40f71c58){p = qR5; q = qS5;} else if (ix >= 0x4036db68){p = qR3; q = qS3;} - else if (ix >= 0x40000000){p = qR2; q = qS2;} + else /*ix >= 0x40000000*/ {p = qR2; q = qS2;} z = 1.0f/(x*x); r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |