diff options
author | Szabolcs Nagy <nsz@port70.net> | 2012-12-16 19:49:55 +0100 |
---|---|---|
committer | Szabolcs Nagy <nsz@port70.net> | 2012-12-16 19:49:55 +0100 |
commit | f143458223f90262a9c2d929f9e815a74e3aa139 (patch) | |
tree | 0fa8e36f892fb0481977366226d1c42eae5a5b95 /src/math | |
parent | 1aec620f9366c29d761fe42b3e02bd8024685db3 (diff) | |
download | musl-f143458223f90262a9c2d929f9e815a74e3aa139.tar.gz musl-f143458223f90262a9c2d929f9e815a74e3aa139.tar.bz2 musl-f143458223f90262a9c2d929f9e815a74e3aa139.tar.xz musl-f143458223f90262a9c2d929f9e815a74e3aa139.zip |
math: sinh.c cleanup similar to the cosh one
comments are kept in the double version of the function
Diffstat (limited to 'src/math')
-rw-r--r-- | src/math/sinh.c | 90 | ||||
-rw-r--r-- | src/math/sinhf.c | 66 | ||||
-rw-r--r-- | src/math/sinhl.c | 87 |
3 files changed, 72 insertions, 171 deletions
diff --git a/src/math/sinh.c b/src/math/sinh.c index 0c67ba39..47e36bfa 100644 --- a/src/math/sinh.c +++ b/src/math/sinh.c @@ -1,71 +1,39 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/e_sinh.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* sinh(x) - * Method : - * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 - * 1. Replace x by |x| (sinh(-x) = -sinh(x)). - * 2. - * E + E/(E+1) - * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) - * 2 - * - * 22 <= x <= lnovft : sinh(x) := exp(x)/2 - * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) - * ln2ovft < x : sinh(x) := x*shuge (overflow) - * - * Special cases: - * sinh(x) is |x| if x is +INF, -INF, or NaN. - * only sinh(0)=0 is exact for finite x. - */ - #include "libm.h" -static const double huge = 1.0e307; - +/* sinh(x) = (exp(x) - 1/exp(x))/2 + * = (exp(x)-1 + (exp(x)-1)/exp(x))/2 + * = x + x^3/6 + o(x^5) + */ double sinh(double x) { - double t, h; - int32_t ix, jx; - - /* High word of |x|. */ - GET_HIGH_WORD(jx, x); - ix = jx & 0x7fffffff; - - /* x is INF or NaN */ - if (ix >= 0x7ff00000) - return x + x; + union {double f; uint64_t i;} u = {.f = x}; + uint32_t w; + double t, h, absx; h = 0.5; - if (jx < 0) h = -h; - /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ - if (ix < 0x40360000) { /* |x|<22 */ - if (ix < 0x3e300000) /* |x|<2**-28 */ - /* raise inexact, return x */ - if (huge+x > 1.0) + if (u.i >> 63) + h = -h; + /* |x| */ + u.i &= (uint64_t)-1/2; + absx = u.f; + w = u.i >> 32; + + /* |x| < log(DBL_MAX) */ + if (w < 0x40862e42) { + t = expm1(absx); + if (w < 0x3ff00000) { + if (w < 0x3ff00000 - (26<<20)) + /* note: inexact is raised by expm1 */ + /* note: this branch avoids underflow */ return x; - t = expm1(fabs(x)); - if (ix < 0x3ff00000) - return h*(2.0*t - t*t/(t+1.0)); - return h*(t + t/(t+1.0)); + return h*(2*t - t*t/(t+1)); + } + /* note: |x|>log(0x1p26)+eps could be just h*exp(x) */ + return h*(t + t/(t+1)); } - /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ - if (ix < 0x40862E42) - return h*exp(fabs(x)); - - /* |x| in [log(maxdouble), overflowthresold] */ - if (ix <= 0x408633CE) - return h * 2.0 * __expo2(fabs(x)); /* h is for sign only */ - - /* |x| > overflowthresold, sinh(x) overflow */ - return x*huge; + /* |x| > log(DBL_MAX) or nan */ + /* note: the result is stored to handle overflow */ + t = 2*h*__expo2(absx); + return t; } diff --git a/src/math/sinhf.c b/src/math/sinhf.c index b8d88224..6ad19ea2 100644 --- a/src/math/sinhf.c +++ b/src/math/sinhf.c @@ -1,57 +1,31 @@ -/* origin: FreeBSD /usr/src/lib/msun/src/e_sinhf.c */ -/* - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - #include "libm.h" -static const float huge = 1.0e37; - float sinhf(float x) { - float t, h; - int32_t ix, jx; - - GET_FLOAT_WORD(jx, x); - ix = jx & 0x7fffffff; - - /* x is INF or NaN */ - if (ix >= 0x7f800000) - return x + x; + union {float f; uint32_t i;} u = {.f = x}; + uint32_t w; + float t, h, absx; h = 0.5; - if (jx < 0) + if (u.i >> 31) h = -h; - /* |x| in [0,9], return sign(x)*0.5*(E+E/(E+1))) */ - if (ix < 0x41100000) { /* |x|<9 */ - if (ix < 0x39800000) /* |x|<2**-12 */ - /* raise inexact, return x */ - if (huge+x > 1.0f) + /* |x| */ + u.i &= 0x7fffffff; + absx = u.f; + w = u.i; + + /* |x| < log(FLT_MAX) */ + if (w < 0x42b17217) { + t = expm1f(absx); + if (w < 0x3f800000) { + if (w < 0x3f800000 - (12<<23)) return x; - t = expm1f(fabsf(x)); - if (ix < 0x3f800000) - return h*(2.0f*t - t*t/(t+1.0f)); - return h*(t + t/(t+1.0f)); + return h*(2*t - t*t/(t+1)); + } + return h*(t + t/(t+1)); } - /* |x| in [9, logf(maxfloat)] return 0.5*exp(|x|) */ - if (ix < 0x42b17217) - return h*expf(fabsf(x)); - - /* |x| in [logf(maxfloat), overflowthresold] */ - if (ix <= 0x42b2d4fc) - return h * 2.0f * __expo2f(fabsf(x)); /* h is for sign only */ - - /* |x| > overflowthresold, sinh(x) overflow */ - return x*huge; + /* |x| > logf(FLT_MAX) or nan */ + t = 2*h*__expo2f(absx); + return t; } diff --git a/src/math/sinhl.c b/src/math/sinhl.c index 8a54677e..14e3371b 100644 --- a/src/math/sinhl.c +++ b/src/math/sinhl.c @@ -1,32 +1,3 @@ -/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_sinhl.c */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* sinhl(x) - * Method : - * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 - * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). - * 2. - * E + E/(E+1) - * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) - * 2 - * - * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 - * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) - * ln2ovft < x : sinhl(x) := x*huge (overflow) - * - * Special cases: - * sinhl(x) is |x| if x is +INF, -INF, or NaN. - * only sinhl(0)=0 is exact for finite x. - */ - #include "libm.h" #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 @@ -35,47 +6,35 @@ long double sinhl(long double x) return sinh(x); } #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 -static const long double huge = 1.0e4931L; - long double sinhl(long double x) { - long double t,w,h; - uint32_t jx,ix,i0,i1; - - /* Words of |x|. */ - GET_LDOUBLE_WORDS(jx, i0, i1, x); - ix = jx & 0x7fff; - - /* x is INF or NaN */ - if (ix == 0x7fff) return x + x; + union { + long double f; + struct{uint64_t m; uint16_t se; uint16_t pad;} i; + } u = {.f = x}; + unsigned ex = u.i.se & 0x7fff; + long double h, t, absx; h = 0.5; - if (jx & 0x8000) + if (u.i.se & 0x8000) h = -h; - /* |x| in [0,25], return sign(x)*0.5*(E+E/(E+1))) */ - if (ix < 0x4003 || (ix == 0x4003 && i0 <= 0xc8000000)) { /* |x| < 25 */ - if (ix < 0x3fdf) /* |x|<2**-32 */ - if (huge + x > 1.0) - return x;/* sinh(tiny) = tiny with inexact */ - t = expm1l(fabsl(x)); - if (ix < 0x3fff) - return h*(2.0*t - t*t/(t + 1.0)); - return h*(t + t/(t + 1.0)); - } - - /* |x| in [25, log(maxdouble)] return 0.5*exp(|x|) */ - if (ix < 0x400c || (ix == 0x400c && i0 < 0xb17217f7)) - return h*expl(fabsl(x)); - - /* |x| in [log(maxdouble), overflowthreshold] */ - if (ix < 0x400c || (ix == 0x400c && (i0 < 0xb174ddc0 || - (i0 == 0xb174ddc0 && i1 <= 0x31aec0ea)))) { - w = expl(0.5*fabsl(x)); - t = h*w; - return t*w; + /* |x| */ + u.i.se = ex; + absx = u.f; + + /* |x| < log(LDBL_MAX) */ + if (ex < 0x3fff+13 || (ex == 0x3fff+13 && u.i.m>>32 < 0xb17217f7)) { + t = expm1l(absx); + if (ex < 0x3fff) { + if (ex < 0x3fff-32) + return x; + return h*(2*t - t*t/(1+t)); + } + return h*(t + t/(t+1)); } - /* |x| > overflowthreshold, sinhl(x) overflow */ - return x*huge; + /* |x| > log(LDBL_MAX) or nan */ + t = expl(0.5*absx); + return h*t*t; } #endif |