Age | Commit message (Collapse) | Author | Files | Lines |
|
This PR allows the user to specify a path to a custom cert file (or directory) in
Spack's config:
```yaml
# This is where custom certs for proxy/firewall are stored.
# It can be a path or environment variable. To match ssl env configuration
# the default is the environment variable SSL_CERT_FILE
ssl_certs: $SSL_CERT_FILE
```
`config:ssl_certs` can be a path to a file or a directory, or it can be and environment
variable that resolves to one of those. When it posts to something valid, Spack will
update the ssl context to include custom certs, and fetching via `urllib` and `curl`
will trust the provided certs.
This should resolve many issues with fetching behind corporate firewalls.
---------
Co-authored-by: psakievich <psakievich@users.noreply.github.com>
Co-authored-by: Alec Scott <alec@bcs.sh>
|
|
* Allow compilers to function across compatible OS's
* Add documentation in the default yaml
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
|
|
This PR adds:
- A new runtime for `%oneapi` compilers, called `intel-oneapi-runtime`
- Information to both `gcc-runtime` and `intel-oneapi-runtime`, to ensure
that we don't mix compilers using different soname for either `libgfortran`
or `libifcore`
To do so, the following internal mechanisms have been implemented:
- Possibility to inject virtual dependencies from the `runtime_constraints`
callback on packages
Information has been added to `gcc-runtime` to provide the correct soname
under different conditions on its `%gcc`.
Rules injected into the solver looks like:
```prolog
% Add a dependency on 'gfortran@5' for nodes compiled with gcc@=13.2.0 and using the 'fortran' language
attr("dependency_holds", node(ID, Package), "gfortran", "link") :-
attr("node", node(ID, Package)),
attr("node_compiler", node(ID, Package), "gcc"),
attr("node_compiler_version", node(ID, Package), "gcc", "13.2.0"),
not external(node(ID, Package)),
not runtime(Package),
attr("language", node(ID, Package), "fortran").
attr("virtual_node", node(RuntimeID, "gfortran")) :-
attr("depends_on", node(ID, Package), ProviderNode, "link"),
provider(ProviderNode, node(RuntimeID, "gfortran")),
attr("node", node(ID, Package)),
attr("node_compiler", node(ID, Package), "gcc"),
attr("node_compiler_version", node(ID, Package), "gcc", "13.2.0"),
not external(node(ID, Package)),
not runtime(Package),
attr("language", node(ID, Package), "fortran").
attr("node_version_satisfies", node(RuntimeID, "gfortran"), "5") :-
attr("depends_on", node(ID, Package), ProviderNode, "link"),
provider(ProviderNode, node(RuntimeID, "gfortran")),
attr("node", node(ID, Package)),
attr("node_compiler", node(ID, Package), "gcc"),
attr("node_compiler_version", node(ID, Package), "gcc", "13.2.0"),
not external(node(ID, Package)),
not runtime(Package),
attr("language", node(ID, Package), "fortran").
```
|
|
* apple-libuuid: update installation directory
Copy design of Apple GL
|
|
This reverts commit a2f00886e911a8219bfac27752e5c7fd83c65280.
|
|
Add a new config section: `config:aliases`, which is a dictionary mapping aliases
to commands.
For instance:
```yaml
config:
aliases:
sp: spec -I
```
will define a new command `sp` that will execute `spec` with the `-I`
argument.
Aliases cannot override existing commands, and this is ensured with a test.
We cannot currently alias subcommands. Spack will warn about any aliases
containing a space, but will not error, which leaves room for subcommand
aliases in the future.
---------
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
|
|
|
|
* Add support for Python 3.12
* Use optimized build of clingo
|
|
* Allow branching out of the "generic build" unification set
For cases like the one in https://github.com/spack/spack/pull/39661
we need to relax rules on unification sets.
The issue is that, right now, nodes in the "generic build" unification
set are unified together with their build dependencies. This was done
out of caution to avoid the risk of circular dependencies, which would
ultimately cause a very slow solve.
For build-tools like Cython, however, the build dependencies is masked
by a long chain of "build, run" dependencies that belong in the
"generic build" unification space.
To allow splitting on cases like this, we relax the rule disallowing
branching out of the "generic build" unification set.
* Fix issue with pure build virtual dependencies
Pure build virtual dependencies were not accounted properly in the
list of possible virtuals. This caused some facts connecting virtuals
to the corresponding providers to not be emitted, and in the end
lead to unsat problems.
* Fixed a few issues in packages
py-gevent: restore dependency on py-cython@3
jsoncpp: fix typo in build dependency
ecp-data-vis-sdk: update spack.yaml and cmake recipe
py-statsmodels: add v0.13.5
* Make dependency on "blt" of type "build"
|
|
In the HPC package manager, we want the fastest `zlib` implementation by default. `zlib-ng` is up to 4x faster than stock `zlib`, and it can do things like take advantage of AVX-512 instructions. This PR makes `zlib-ng` the default `zlib-api` provider (`zlib-api` was introduced earlier, in #37372).
As far as I can see, the only issues you can encounter are:
1. Build issues with packages that heavily rely on `zlib` internals. In Gitlab CI only one out of hundreds of packages had that issue (it extended zlib with deflate stuff, and used its own copy of zlib sources).
2. Packages that like to detect `zlib-ng` separately and rely on `zlib-ng` internals. The only issue I've found with this among the hundreds of packages built in CI is `perl` trying to report more specific zlib-ng version details, and relied on some internals that got refactored. But yeah... that warrants a patch / conflict and is nothing special.
At runtime, you cannot really have any issues, given that zlib and zlib-ng export the exact same symbols (and zlib-ng tests this in their CI).
You can't really have issues with externals when using zlib-ng either. The only type of issue is when system zlib is rather new, and not marked as external; if another external uses new symbols, and Spack builds an older zlib/zlib-ng, then the external might not find the new symbols. But this is a configuration issue, and it's not an issue caused by zlib-ng, as the same would happen with older Spack zlib.
* zlib-api: use zlib-ng +compat by default
* make a trivial change to zlib-ng to trigger a rebuild
* add `haampie` as maintainer
|
|
The "concretizer" section has been extended with a "duplicates:strategy"
attribute, that can take three values:
- "none": only 1 node per package
- "minimal": allow multiple nodes opf specific packages
- "full": allow full duplication for a build tool
|
|
Introduces a new virtual zlib-api, which replaces zlib in most packages.
This allows users to switch to zlib-ng by default for better performance.
|
|
|
|
Allow the following formats:
```yaml
mirrors:
name: <url>
```
```yaml
mirrors:
name:
url: s3://xyz
access_pair: [x, y]
```
```yaml
mirrors:
name:
fetch: http://xyz
push:
url: s3://xyz
access_pair: [x, y]
```
And reserve two new properties to indicate the mirror type (e.g.
mirror.spack.io is a source mirror, not a binary cache)
```yaml
mirrors:
spack-public:
source: true
binary: false
url: https://mirror.spack.io
```
|
|
Refactor `TermTitle` into `InstallStatus` and use it to show progress
information both in the terminal title as well as inline. This also
turns on the terminal title status by default.
The inline output will look like the following after this change:
```
==> Installing m4-1.4.19-w2fxrpuz64zdq63woprqfxxzc3tzu7p3 [4/4]
```
|
|
* add a virtual dependency name instead of complete package name
* add OneAPI components as providers of virtual packages
* Revert the default of tbb
---------
Co-authored-by: Nisarg Patel <nisarg.patel@lrz.de>
|
|
* Disable module generation by default (#35564)
a) It's used by site administrators, so it's niche
b) If it's used by site administrators, they likely need to modify the config anyhow, so the default config only serves as an example to get started
c) it's too arbitrary to enable tcl, but disable lmod
* Remove leftover from old module file schema
* Warn if module file config is detected and generation is disabled
---------
Co-authored-by: Harmen Stoppels <harmenstoppels@gmail.com>
|
|
* macOS: use Apple GL/GLU by default
* Use CLT instead
* Use CLT instead
* Undo change to libuuid
|
|
Add `config:stage_name` which is a Spec format string that can
customize the names of stages created by Spack. This was primarily
created to allow generating shorter stage names on Windows (along
with `config:build_stage`, this can be used to create stages with
short absolute paths).
By default, this is not set and the prior name stage format is used.
This also removes the username component that is always added to
Stage paths on Windows (if users want to include this, they can
add it to the `build_stage`).
|
|
Corrects libs detection with a more specific root, otherwise there
can be inconsistencies between version of WGL requested and the
version picked up by `find_libraries`.
Corrects headers detection - win-sdk, win-wdk, and WGL headers all
exist under the same directory, so we can compute the headers for WGL
without querying the spec for win-sdk (which causes errors).
This commit also removes the `plat` variant of `wgl`, which is
redundant with the Spec's target.
|
|
Since environment-modules has support for autoloading since 4.2,
and Spack-builds of it enable it by default, use the same autoload
default for tcl as lmod.
|
|
This adds a new mode for `concretizer:reuse` called `dependencies`,
which only reuses dependencies. Currently, `spack install foo` will
reuse older versions of `foo`, which might be surprising to users.
|
|
* Refactor go bootstrapping to include binary or gcc bootstrap
|
|
|
|
* Allow users to specify root env dir
Environments managed by spack have some advantages over anonymous Environments
but they are tucked away inside spack's directory tree. This PR gives
users the ability to specify where the environments should live.
See #32823
This is also taken as an opportunity to ensure that all references are to "managed environments",
rather than "named environments". Prior to this PR some references to the latter persisted.
Co-authored-by: Tom Scogland <scogland1@llnl.gov>
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
Co-authored-by: Gregory Becker <becker33@llnl.gov>
|
|
This reverts commit 5b8917188a4d84713c1037fd9464bf77503edd27.
|
|
a) It's used by site administrators, so it's niche
b) If it's used by site administrators, they likely need to modify the config anyhow, so the default config only serves as an example to get started
c) it's too arbitrary to enable tcl, but disable lmod
|
|
When running many concurrent spack install processes that need to write
to the db, Spack regularly times out. This is because writing to the DB
after another process has written to it requires deserialization of the
db, mutating it in memory, and serializing it again, which takes some
time. On top of that, I believe there's a 1 second retry when a write
lock cannot be obtained, so I think this means only 3 processes can
really write to the DB at the same time before timing out.
|
|
Add one more note on the $env variable in `config.yaml`.
|
|
* Update packages config to indicate that MSVC is the preferred compiler
* Update packages config to indicate that msmpi is the preferred MPI provider
* Fix msmpi external detection
|
|
* warn about removal of deprecated format strings
Co-authored-by: becker33 <becker33@users.noreply.github.com>
|
|
Using `-Werror` is good practice for development and testing, but causes us a great
deal of heartburn supporting multiple compiler versions, especially as newer compiler
versions add warnings for released packages. This PR adds support for suppressing
`-Werror` through spack's compiler wrappers. There are currently three modes for
the `flags:keep_werror` setting:
* `none`: (default) cancel all `-Werror`, `-Werror=*` and `-Werror-*` flags by
converting them to `-Wno-error[=]*` flags
* `specific`: preserve explicitly selected warnings as errors, such as
`-Werror=format-truncation`, but reverse the blanket `-Werror`
* `all`: keeps all `-Werror` flags
These can be set globally in config.yaml, through the config command-line flags, or
overridden by a particular package (some packages use Werror as a proxy for determining
support for other compiler features). We chose to use this approach because:
1. removing `-Werror` flags entirely broke *many* build systems, especially autoconf
based ones, because of things like checking `-Werror=feature` and making the
assumption that if that did not error other flags related to that feature would also work
2. Attempting to preserve `-Werror` in some phases but not others caused similar issues
3. The per-package setting came about because some packages, even with all these
protections, still use `-Werror` unsafely. Currently there are roughly 3 such packages
known.
|
|
This reverts commit 7f9af8d4a0bfbb1577e5ac9982624d8d0cb9b9ca.
|
|
Co-authored-by: becker33 <becker33@users.noreply.github.com>
|
|
`spack env create` enables a view by default (in a weird hidden
directory, but well...). This is asking for trouble with the other
default of `concretizer:unify:false`, since having different flavors of
the same spec in an environment, leads to collision errors when
generating the view.
A change of defaults would improve user experience:
However, `unify:true` makes most sense, since any time the issue is
brought up in Slack, the user changes the concretization config, since
it wasn't the intention to have different flavors of the same spec, and
install times are decreased.
Further we improve the docs and drop the duplicate root spec limitation
|
|
Adds another post install hook that loops over the install prefix, looking for shared libraries type of ELF files, and sets the soname to their own absolute paths.
The idea being, whenever somebody links against those libraries, the linker copies the soname (which is the absolute path to the library) as a "needed" library, so that at runtime the dynamic loader realizes the needed library is a path which should be loaded directly without searching.
As a result:
1. rpaths are not used for the fixed/static list of needed libraries in the dynamic section (only for _actually_ dynamically loaded libraries through `dlopen`), which largely solves the issue that Spack's rpaths are a heuristic (`<prefix>/lib` and `<prefix>/lib64` might not be where libraries really are...)
2. improved startup times (no library search required)
|
|
|
|
Changes to improve locating shared libraries on Windows, which in
turn enables the use of Clingo. This PR attempts to establish a
proper distinction between linking on Windows vs. Linux/Mac: on
Windows, linking is always done with .lib files (never .dll files).
This somewhat complicates the model since the Spec.lib method could
return libraries that were used for both linking and loading, but
since these are not always the same on Windows, it was decided to
treat Spec.libs as being for link-time libraries. Additional functions
are added to help dependents locate run-time libraries.
* Clingo is now the default concretizer on Windows
* Clingo is now the concretizer used for unit tests on Windows
* Fix a permissions issue that can occur while moving Git files during
fetching/staging
* Packages can now implement "win_add_library_dependent" to register
files/directories that include libraries that would need to link
to dependency dlls
* Packages can now implement "win_add_rpath" to register the locations
of dlls that dependents would want to load
* "Spec.libs" on Windows is updated to return link-time libraries
(i.e. .lib files, rather than .dll files)
* PackageBase.rpath on Windows is now updated to return the most-likely
locations where .dlls will be found (which is generally in the bin/
directory)
|
|
"spack install" will not update the binary index if given a concrete
spec, which causes it to fall back to direct fetches when a simple
index update would have helped. For S3 buckets in particular, this
significantly and needlessly slows down the install process.
This commit alters the logic so that the binary index is updated
whenever a by-hash lookup fails. The lookup is attempted again with
the updated index before falling back to direct fetches. To avoid
updating too frequently (potentially once for each spec being
installed), BinaryCacheIndex.update now includes a "cooldown"
option, and when this option is enabled it will not update more
than once in a cooldown window (set in config.yaml).
Co-authored-by: Tamara Dahlgren <35777542+tldahlgren@users.noreply.github.com>
|
|
For ARM64, fallback to gccgo. (go-bootstrap@1.4 can't support ARM64)
|
|
This release allow to bootstrap patchelf from binaries.
|
|
|
|
`LD_LIBRARY_PATH` can break system executables (e.g., when an enviornment is loaded) and isn't necessary thanks to `RPATH`s. Packages that require `LD_LIBRARY_PATH` can set this in `setup_run_environment`.
- [x] Prefix inspections no longer set `LD_LIBRARY_PATH` by default
- [x] Document changes and workarounds for people who want `LD_LIBRARY_PATH`
|
|
* OpenGL: Restructures the OpenGL packages
This provides concrete glx and osmesa packages which delegate to
virtual libglx and libosmesa packages provided by mesa. This was
necessary because GLX and OSMesa both provide gl implementations but
with mesa providing the girtual gl package there was no way to properly
distinguish which of the two opengl implementations was beiing requested
when querying the spec['gl'] dependency. This additional level of
indirection allows for that.
* OpenGL: Adjust downstream dependents of OpenGL for the restructure
This implements the necessary fixes in the packages that depend on
OpenGL to work with the restructuring. This also attempts to create a
consistent variant for specifying glx or osmesa.
|
|
This PR builds on #28392 by adding a convenience command to create a local mirror that can be used to bootstrap Spack. This is to overcome the inconvenience in setting up this mirror manually, which has been reported when trying to setup Spack on air-gapped systems.
Using this PR the user can create a bootstrapping mirror, on a machine with internet access, by:
% spack bootstrap mirror --binary-packages /opt/bootstrap
==> Adding "clingo-bootstrap@spack+python %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "gnupg@2.3: %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding "patchelf@0.13.1:0.13.99 %apple-clang target=x86_64" and dependencies to the mirror at /opt/bootstrap/local-mirror
==> Adding binary packages from "https://github.com/alalazo/spack-bootstrap-mirrors/releases/download/v0.1-rc.2/bootstrap-buildcache.tar.gz" to the mirror at /opt/bootstrap/local-mirror
To register the mirror on the platform where it's supposed to be used run the following command(s):
% spack bootstrap add --trust local-sources /opt/bootstrap/metadata/sources
% spack bootstrap add --trust local-binaries /opt/bootstrap/metadata/binaries
The mirror has to be moved over to the air-gapped system, and registered using the commands shown at prompt. The command has options to:
1. Add pre-built binaries downloaded from Github (default is not to add them)
2. Add development dependencies for Spack (currently the Python packages needed to use spack style)
* bootstrap: refactor bootstrap.yaml to move sources metadata out
* bootstrap: allow adding/removing custom bootstrapping sources
This operation can be performed from the command line since
new subcommands have been added to `spack bootstrap`
* Add --trust argument to spack bootstrap add
* Add a command to generate a local mirror for bootstrapping
* Add a unit test for mirror creation
|
|
* Introduce concretizer:unify option to replace spack:concretization
* Deprecate concretization
* Make spack:concretization overrule concretize:unify for now
* Add environment update logic to move from spack:concretization to spack:concretizer:reuse
* Migrate spack:concretization to spack:concretize:unify in all locations
* For new environments make concretizer:unify explicit, so that defaults can be changed in 0.19
|
|
* Change license dir from hard-coded to a configurable item
* Change config item to be a string not an array
Co-authored-by: Todd Gamblin <tgamblin@llnl.gov>
|
|
* Enable reuse by default in Spack
* Update documentation to match new default
* Configure pipelines not to reuse software
|
|
Reworking lua to allow easier substitution of the base lua implementation.
Also adding in a maintained version of luajit and re-factoring the entire stack
to use a custom build-system to centralize functionality like environment
variable management and luarocks installation.
The `lua-lang` virtual is now versioned so that a package that requires
Lua 5.1 semantics can get any lua, but one that requires 5.2 will only
get upstream lua.
The luaposix package requires lua-bit32, but only when built with a
lua conforming to version 5.1. This adds the package, and the
dependencies, but exposed a problem with luarocks dependency
detection. Since we're installing each package in its own "tree" and
there's no environment variable to list extra trees, spack now
generates a luarocks config file that lists all the trees of all the
dependencies, and references it by setting `LUAROCKS_CONFIG`
in the build environment of every LuaPackage. This allows luarocks
to find the spack installed dependencies correctly rather than
trying (and failing) to download them.
Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
Co-authored-by: Tom Scogland <tscogland@llnl.gov>
Co-authored-by: Massimiliano Culpo <massimiliano.culpo@gmail.com>
|
|
* ASP-based solver: allow configuring target selection
This commit adds a new "concretizer:targets" configuration
section, and two options under it.
- "concretizer:targets:granularity" allows switching from
considering only generic targets to consider all possible
microarchitectures.
- "concretizer:targets:host_compatible" instead controls
whether we can concretize for microarchitectures that
are incompatible with the current host.
* Add documentation
* Add unit-tests
|